Issue 7, 2015

The lipid-reactive oxygen species phenotype of breast cancer. Raman spectroscopy and mapping, PCA and PLSDA for invasive ductal carcinoma and invasive lobular carcinoma. Molecular tumorigenic mechanisms beyond Warburg effect

Abstract

Vibrational signatures of human breast tissue (invasive ductal carcinoma and invasive lobular carcinoma) were used to identify, characterize and discriminate structures in normal (noncancerous) and cancerous tissues by confocal Raman imaging, Raman spectroscopy and IR spectroscopy. The most important differences between normal and cancerous tissues were found in regions characteristic for vibrations of carotenoids, fatty acids, proteins, and interfacial water. Particular attention was paid to the role played by unsaturated fatty acids and their derivatives. K-means clustering and basis analysis followed by PCA and PLSDA is employed to analyze Raman spectroscopic maps of human breast tissue and for a statistical analysis of the samples (82 patients, 164 samples). Raman maps successfully identify regions of carotenoids, fatty acids, and proteins. The intensities, frequencies and profiles of the average Raman spectra differentiate the biochemical composition of normal and cancerous tissues. The paper demonstrates that Raman imaging has reached a clinically relevant level in regard to breast cancer diagnosis applications. The sensitivity and specificity obtained directly from PLSLD and cross validation are equal to 90.5% and 84.8% for calibration and 84.7% and 71.9% for cross-validation respectively.

Graphical abstract: The lipid-reactive oxygen species phenotype of breast cancer. Raman spectroscopy and mapping, PCA and PLSDA for invasive ductal carcinoma and invasive lobular carcinoma. Molecular tumorigenic mechanisms beyond Warburg effect

Article information

Article type
Paper
Submitted
17 okt 2014
Accepted
12 jan 2015
First published
12 jan 2015

Analyst, 2015,140, 2121-2133

Author version available

The lipid-reactive oxygen species phenotype of breast cancer. Raman spectroscopy and mapping, PCA and PLSDA for invasive ductal carcinoma and invasive lobular carcinoma. Molecular tumorigenic mechanisms beyond Warburg effect

J. Surmacki, B. Brozek-Pluska, R. Kordek and H. Abramczyk, Analyst, 2015, 140, 2121 DOI: 10.1039/C4AN01876A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements