The different behaviours of dissolved silver and silver nanoparticles under ICP-MS single particle detection conditions have been used to differentiate directly between both forms of silver in aqueous samples. Suspensions containing silver nanoparticles at number concentrations below 109 L−1 and/or dissolved Ag(I) are introduced into the ICP-MS by conventional pneumatic nebulization and measured with a time resolution of 5 ms. Each silver nanoparticle is converted in the ICP into a packet of ions, which are detected as a single pulse, whose intensity is proportional to the number of silver atoms in the nanoparticle, whereas dissolved silver produces pulses of averaged constant intensity. The frequency plots with respect to the intensity measured for each pulse show independent distributions for dissolved silver and silver nanoparticles, whose profiles are also different (Poisson and lognormal, respectively). Size limits of detection for pure Ag nanoparticles of 18 nm, equivalent to a silver mass of 32 ag, were obtained. Number concentration limits of detection of 1 × 104 L−1 can be achieved. A methodological approach for identification, characterization and determination of mass and number concentration of dissolved Ag(I) and silver nanoparticles at environmentally relevant concentrations is presented.
You have access to this article
Please wait while we load your content...
Something went wrong. Try again?