Wafer-Scale Integration of Monolayer MoS₂ via Residue-Free Support Layer Etching and Angular Strain Suppression

Abstract

A crack-free and residue-free transfer technique for large-area, atomically-thin 2D transition metal dichalcogenides (TMDCs) such as MoS2 and WS2 is critical for their integration into next-generation electronic devices, either as channel materials replacing silicon or as back-end-of-line (BEOL) components in 3D-integrated nano-systems on CMOS platforms. However, cracks are frequently observed during the debonding of TMDCs from their growth substrates, and polymer or metal residues are often left behind after the removal of adhesive support layers via wet etching. These issues stem from excessive angular strain accumulated during debonding and the incomplete removal of support layers due to their low solubility. In this study, we developed a novel debonding strategy along with an optimized etching protocol to address these challenges. Characterization using Raman spectroscopy, photoluminescence (PL), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and optical microscopy (OM) confirmed that the optimized process enables clean, crack-free, and morphologically intact MoS₂ films. The success of the crack-free and residual-free transfer is attributed to two key factors: (1) the suppression of mechanical bending during debonding, which eliminates bending-induced crack formation; and (2) the precise control of etchant concentration, reaction duration, and post-etch rinsing steps, which ensures the complete removal of the support layer without damaging the MoS2 film. Using commercially available fab tools such as wafer bonders and debonders, we successfully demonstrated the clean transfer of a 2-inch monolayer MoS2 film with a high transfer yield of 95 %, highlighting the practical applicability of this process for scalable device fabrication.

Supplementary files

Article information

Article type
Paper
Submitted
21 Jul 2025
Accepted
02 Sep 2025
First published
03 Sep 2025
This article is Open Access
Creative Commons BY-NC license

Nanoscale, 2025, Accepted Manuscript

Wafer-Scale Integration of Monolayer MoS₂ via Residue-Free Support Layer Etching and Angular Strain Suppression

S. W. Tong, M. Chen, X. Ju, J. W. Chai, J. Kim, J. Kim, H. K. Ng, B. Y. H. Tan and D. Chi, Nanoscale, 2025, Accepted Manuscript , DOI: 10.1039/D5NR03068D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements