Strategies for balancing safety in oxadiazole tetrazole derivatives: the role of the oxime group†
Abstract
The development of modern thermostable and insensitive energetic materials is crucial. In this study, straightforward syntheses of thermostable and insensitive 4-amino-1,2,5-oxadiazol-3-yl(1H-tetrazol-5-yl)methanone oxime (4) and its energetic salts (5–7) are given. These oxime-bridged oxadiazole-tetrazole derivatives exhibit significant thermal stability, with decomposition temperatures 204–275 °C, and demonstrate high insensitivity to impact (IS > 40 J) and friction (FS > 360 N). These significant energetic performance properties can be ascribed to the oxime group positioned between the oxadiazole and tetrazole rings, which promotes robust non-covalent interactions within the molecular geometry. Moreover, the compounds exhibit favorable densities and high heats of formation compared to TNT, RDX, TATB, and HNS.