Anionic vacancy engineering in the development of electrocatalysts for hydrogen evolution reaction: a review
Abstract
Water splitting, one of the emerging ways to produce hydrogen, has the advantages of being clean, simple and sustainable. The hydrogen evolution reaction (HER), as one of the half-reactions of water splitting, is considered to be the simplest electrochemical reaction as well as the basis for the study of more complex electrochemical reactions. Therefore, modification strategies for HER catalysts have also been widely investigated. Vacancy engineering, as one of the modification strategies for catalysts, has been widely used due to the advantages of its simple strategy and various modulation possibilities. This review aims to provide a comprehensive overview of recent advances in the field of anionic vacancies in HER catalysts. First, the characterization, introduction, and detection methods of vacancies are systematically described. Second, a list of common types of anionic vacancies available and their applications is given. An in-depth exploration of specific modification methods for anionic vacancies in HER catalysts follows. Finally, the prospects and challenges of anionic vacancies in the field of HER catalysts are discussed.
- This article is part of the themed collections: 2024 Inorganic Chemistry Frontiers HOT articles and 2024 Inorganic Chemistry Frontiers Review-type Articles