Estimating water transport in carbon nanotubes: a critical review and inclusion of scale effects
Abstract
The quasi-frictionless water flow across graphitic surfaces offers vast opportunities for a wide range of applications from biomedical science to energy. However, the conflicting experimental results impede a clear understanding of the transport mechanism and desired flow control. Existing literature proposes numerous modifications and updated boundary conditions to extend classical hydrodynamic theories for nanoflows, yet a consensus or definitive conclusion remains elusive. This study presents a critical review of the proposed modifications of the pressure driven flow or the Hagen–Poiseuille (HP) equations to estimate the flow enhancement through carbon nanotubes (CNTs). For such a case, we performed (semi-)classical molecular dynamics simulations of water flow in various sizes of CNTs, applied the different forms of boundary definitions from the literature, and derived HP equation models by implementing these modifications. By aggregating seven distinct experimental datasets, we tested various flow enhancement models against our measurements. Our findings indicate that including the interfacial layering-based dynamic slip-definition in the proposed HP equations yields accurate estimations. While considering interfacial viscosity predicts the individual CNT experiments well, using the experimental viscosity yields better estimations of measurements for the water flow enhancement through membranes of CNTs. This critical review testing existing literature demonstrates how to refine continuum fluid mechanics to predict water flow enhancement at the nanoscale providing holistic multiscale modeling.
- This article is part of the themed collection: 2024 PCCP Reviews