Pattern-illumination time-resolved phase microscopy and its applications for photocatalytic and photovoltaic materials
Abstract
Pattern-illumination time-resolved phase microscopy (PI-PM) is a technique used to study the microscopic charge carrier dynamics in photocatalytic and photovoltaic materials. The method involves illuminating a sample with a pump light pattern, which generates charge carriers and they decay subsequently due to trapping, recombination, and transfer processes. The distribution of photo-excited charge carriers is observed through refractive index changes using phase-contrast imaging. In the PI-PM method, the sensitivity of the refractive index change is enhanced by adjusting the focus position, the method takes advantage of photo-excited charge carriers to observe non-radiative processes, such as charge diffusion, trapping in defect/surface states, and interfacial charge transfer of photocatalytic and photovoltaic reactions. The quality of the image sequence is recovered using various informatics calculations. Categorizing and mapping different types of charge carriers based on their response profiles using clustering analysis provides spatial information on charge carrier types and the identification of local sites for efficient and inefficient photo-induced reactions, providing valuable information for the design and optimization of photocatalytic materials such as the cocatalyst effect.
- This article is part of the themed collection: 2024 PCCP Reviews