Photomechanical properties in metal–organic crystals
Abstract
The emergence of materials that can effectively convert photon energy (light) into motion (mechanical work) and change their shapes on command is of great interest for their potential in the fabrication of devices (powered by light) that will revolutionize the technologies of optical actuators, smart medical devices, soft robotics, artificial muscles and flexible electronics. Recently, metal–organic crystals have emerged as desirable smart hybrid materials that can hop, split and jump. Thus, their incorporation into polymer host objects can control movement from molecules to millimetres, opening up a new world of light-switching smart materials. This feature article briefly summarizes the recent part of the fast-growing literature on photomechanical properties in metal–organic crystals, such as coordination compounds, coordination polymers (CPs), and metal–organic frameworks (MOFs). The article highlights the contributions of our group along with others in this area and aims to provide a consolidated idea of the engineering strategies and structure–property relationships of these hybrid materials for such rare phenomena with diverse potential applications.
- This article is part of the themed collection: Emerging Trends in MOFs