A chlorogenic acid-conjugated nanomicelle attenuates disease severity in experimental arthritis†
Abstract
Rheumatoid arthritis (RA) is a systemic immune disorder marked by synovitis, bone damage, and cartilage erosion, leading to increased socio-economic burdens and reduced quality of life. Despite its unknown cause, advancements in understanding its pathophysiology have facilitated novel therapeutic approaches. Current treatments, including disease-modifying anti-rheumatic drugs (DMARDs) and biologics, often result in low efficacy and unnecessary side effects. To address the limitations of these drugs, carrier-based drug delivery systems, such as nanomicelles, have emerged as a promising solution. In this study, nanomicelles were synthesised utilizing PLGA (poly(lactic-co-glycolic acid)) as a backbone; this backbone is conjugated with chlorogenic acid (CGA), which is known for suppressing inflammation, and incorporates methotrexate (MTX), a model drug that is established for RA treatment. The nanomicelles were extensively characterized in terms of size, charge, drug loading, and drug-release behaviour. The in vivo assessment of MTX-PLGA-b-CGA nanomicelles in a collagen-induced arthritis model demonstrated a remarkable reduction in joint swelling, cartilage erosion, and disease severity. Furthermore, histological findings confirmed cartilage integrity and reduced expression of key pro-inflammatory markers, including receptor activator of nuclear factor kappa beta ligand (RANKL) and tumor necrosis factor (TNF-α). The approach based on the MTX-PLGA-b-CGA nanomicelles presents a biocompatible and potentially effective therapeutic strategy for management of the severity and progression of RA, providing a hopeful alternative for RA treatment.
- This article is part of the themed collection: Biomaterials Science Emerging Investigator Series