Towards sustainable synthesis: a life cycle assessment of polymer of intrinsic microporosity (PIM-1) by green mechanosynthesis†
Abstract
Mechanochemistry represents an emerging technology that facilitates chemical reactions through the application of mechanical energy. This straightforward technique enhances reaction efficiency, expediting the process in an environmentally friendly, solvent-free manner. Polymers of intrinsic microporosity (PIMs) belongs to a class of polymers characterized by intrinsic microporosity, remarkable processability, and high adsorption capacity, rendering them well-suited for gas-related applications. However, conventional wet chemical synthesis methods of PIM-1 often necessitate substantial solvent usage, leading to significant and enduring environmental impacts. In this study, we present an alternative approach, harnessing green mechanochemical reactions to produce PIM-1. Furthermore, we conducted a comprehensive Life Cycle Assessment (LCA) to compare and simulate the environmental impacts of both wet chemical and mechanosynthesis methods. Our findings indicate the successful qualitative synthesis of PIM-1 through mechanochemistry, resulting in a notable reduction of environmental impacts, approximately 1.5 times less compared to the conventional wet chemical synthesis route. This advancement holds great promise for advancing sustainable and eco-friendly polymer synthesis methods.
- This article is part of the themed collection: Topic Highlight: Life Cycle Assessment