Rational design of covalent organic frameworks for efficient photocatalytic hydrogen peroxide production†
Abstract
Hydrogen peroxide (H2O2) is an important chemical for environmental applications and also used in large-scale industrial processes. Recent studies have demonstrated photocatalytic production of H2O2, but the observed production rates are low, making the materials unpractical for applications at scale. Herein, covalent organic frameworks (COFs) have been studied as photocatalysts for H2O2 production. Two related COFs show markedly different performances, which can be explained by the presence of donor–acceptor configurations in the backbone. N0-COF has increased charge-separation efficiencies and a better band alignment compared to its nitrogen containing analogue N3-COF. The result is that N0-COF has a H2O2 production rate of 15.7 μmol h−1 for 10 mg, which is ten times higher compared to N3-COF. In this study, both experimental and theoretical studies have been used to understand the improved performance. This study reveals the importance of the backbone design of metal-free materials for advanced photocatalytic applications.
- This article is part of the themed collections: Nanomaterial applications in water and Best Papers 2022 – Environmental Science: Nano