A new compound Mn5P4O20H8 achieving efficient heavy metal removal to the ppb level through a dual chemisorption–ion exchange pathway†
Abstract
Effective removal of heavy metal ions down to the mark of tolerance concentration (parts per billion level) from drinking water remains a great challenge. Metal oxide-related materials have emerged as promising candidates for next-gen high performance adsorbents owing to their flexibility in tuning the chemical composition and surface structure. Herein, we have successfully synthesized a new compound Mn5P4O20H8 through a facile one-pot solvothermal process, which has a lattice structure with a three-dimensional network crosslinked by [PO4] tetrahedra and [MnO6] octahedra. A synergistic pathway of surface hydroxyl group trapping and lattice ion-exchange endows the obtained Mn5P4O20H8 with superior removal efficiency (>99%) for Pb2+, Cr3+, and Fe3+ from relatively high concentration (∼5 parts per million, μg L−1) to parts per billion levels (40, 1, and 1 parts per billion for Cr3+, Fe3+, and Pb2+, respectively), much lower than the WHO permitted level for drinking water. The maximum adsorption capacities for Pb2+, Cr3+, and Fe3+ are 1510, 201, and 300 mg g−1, respectively. In addition, the as-prepared Mn5P4O20H8 adsorbent exhibits excellent reusability without significant degradation. These results make the Mn5P4O20H8 material a great adsorbent for the application in remediation of heavy metal polluted water. This work sheds light on extending the design of adsorbent nanomaterials for water treatment to a broader library of synthetic toolboxes and mechanistic ideas.
- This article is part of the themed collection: Nanomaterial applications in water