Simple glycerol-assisted and morphology controllable solvothermal synthesis of CeVO4/BiVO4 hierarchical hollow microspheres with enhanced photocatalytic activities†
Abstract
CeVO4 hierarchical hollow microspheres with various morphologies have been synthesized via a simple glycerol (Gl)-assisted solvothermal route. They are constructed using different morphological nanoscaled units (nanoflakes, nanorods and nanowires) by adjusting the solvent ratio of the system. The Gl and L-aspartic acid (L-Asp) molecules act as structure–directing agents, meaning the CeVO4 hierarchical materials feature adjustable structural variations with 0D, 1D, and 2D structures. A possible formation mechanism is proposed based on the Gl content-dependent and time-dependent morphological evolution results. Under visible-light irradiation, the degradation results towards methylene blue (MB) indicate that the photocatalytic performance of the CeVO4/BiVO4 composites could be easily tuned by simply varying the Gl content ratio and the amount of BiVO4 NPs. Compared with pristine CeVO4, the photodegradation efficiency of the hierarchical nanowires-assembled CeVO4/BiVO4 hollow microspheres exhibit a two-fold increase after doping with 10% BiVO4 and the degradation rate reached 97.8% in 30 min. Owing to the easy fabrication, our strategy may provide broad possibilities for the future development of other hollow micro/nanostructures that exhibit an efficient performance.
- This article is part of the themed collection: 2021 Materials Chemistry Frontiers HOT articles