Rare earth permanent magnetic nanostructures: chemical design and microstructure control to optimize magnetic properties
Abstract
Single-component and exchange-coupled rare earth permanent magnet (REPM) nanostructures are potential candidates for satisfying the demand for device integration and miniaturization. Rare earth-based nanostructures have been commonly studied due to the large magnetocrystalline anisotropy of SmCo5 and the excellent maximum energy product of Nd2Fe14B. The coercivity and maximum energy product strongly depend on the microstructures such as size, shape, and interface. The chemical method is a promising strategy to control the microstructure, which may offer an effective way to obtain high-performance, single-component and exchange-coupled REPM nanostructures. Herein, upon understanding the intrinsic magnetic properties and the relationship between the microstructure and extrinsic magnetic properties, we then discuss the microstructure control of REPM nanostructures prepared by the chemical method as well as the resulting regulation of magnetic properties. Finally, we give the perspective on REPM nanostructures.
- This article is part of the themed collections: Rare Earth Chemistry – In memory of Professor Xu Guangxian at his centenary and Celebrating 110th Anniversary of Chemistry at Peking University