One-pot biocatalytic synthesis of nylon monomers from cyclohexanol using Escherichia coli-based concurrent cascade consortia†
Abstract
We developed a multienzyme biocatalytic cascade with high atom efficiency and a self-sufficient redox network for the synthesis of nylon monomers without adding auxiliary enzymes to recycle cofactors. Herein, a cell-based modularization strategy was applied to produce 6-aminohexanoic acid and ε-caprolactam from cyclohexanol. The designed consortia of E. coli containing the respective modules was found to produce >97% of 6-aminohexanoic acid (from 100 mM cyclohexanol) and 28% of caprolactam (from 10 mM cyclohexanol) with 2-fold excess of propylamine in a one-pot reaction. The use of cheaper substrates and co-substrates makes it an economically beneficial approach for the production of nylon precursors.
- This article is part of the themed collection: Biocatalysis: A cross-journal collection