Recent progress and perspectives on the structural design on metal–organic zeolite (MOZ) frameworks
Abstract
As a typical group of coordination polymers, metal–organic zeolite (MOZs) frameworks inherit the topological and structural advantages of inorganic zeolites and display great application potential in many areas, including gas adsorption/separation, catalysis, luminescence and chemical sensing. In this review, we outline the recent progress in the synthesis, functionalization and application of metal–organic zeolite frameworks, mainly focusing on the basic structural design principle and synthesis strategy on 4-connect inorganic nodes and 2-connect organic linkers. Employing different valent metals, small inorganic TO42− units and high-nuclear clusters as 4-connect nodes, we derived multi-types of MOZs with a modified framework charge, improved stability and enhanced photo-/eletrocatalytic activity. Besides, the selection, functionalization and defect-engineering on the 2-connect ligands generated different topological and functional MOZs. Finally, the future trends and some perspectives in this area are outlined.
- This article is part of the themed collection: 2020 Frontier and Perspective articles