Metal–organic frameworks as advanced materials for sample preparation of bioactive peptides
Abstract
Development of novel affinity materials and separation techniques is crucial for the progress of modern proteomics and peptidomics. Detection of peptides and proteins from complex matrices still remains a challenging task due to the highly complicated biological composition, low abundance of target molecules, and large dynamic range of proteins. As an emerging area of analytical science, metal–organic framework (MOF)-based separation of proteins and peptides is attracting growing interest. This minireview summarizes the recent advances in MOF-based affinity materials for the sample preparation of proteins and peptides. Some newly emerging MOF nanoreactors for the degradation of peptides and proteins are introduced. An update of MOF-based affinity materials for the isolation of glycopeptides, phosphopeptides and low-abundance endogenous peptides in the last two years is focused on. The separation mechanism is discussed along with the chemical structures of MOFs. Finally, the remaining challenges and future development of MOFs in analyzing peptides and proteins in complicated biological samples are discussed.
- This article is part of the themed collection: Advanced Separation