Rational design of 2D hierarchically laminated Fe3O4@nanoporous carbon@rGO nanocomposites with strong magnetic coupling for excellent electromagnetic absorption applications†
Abstract
Developing electromagnetic absorption materials with a strong absorption ability and wide absorption bandwidth has attracted widespread attention in the field of electromagnetic shielding, but it still remains a great challenge. Herein, we successfully developed 2D hierarchically laminated Fe3O4@nanoporous carbon (NPC)@rGO magnetic/dielectric nanocomposites as high-performance microwave absorbers through a facile microwave-assisted approach. The rational design of the composition (Fe3O4, NPC and rGO) and the hierarchical microstructure provided the nanocomposite with a micro-scale 3D magnetic coupling network, a hierarchical dielectric carbon network and good impedance matching, which were identified by the off-axis electronic holography and electromagnetic characterization. As expected, the Fe3O4@NPC@rGO composites achieved a strong reflection loss of −72.6 dB, a matching thickness of 2.0 mm and a broad bandwidth of 5.5 GHz. Such excellent achievements encourage the development of hierarchical magnetic EMA absorbers and provide remarkable inspiration for designing high-performance microwave absorbers.
- This article is part of the themed collections: Journal of Materials Chemistry C Lunar New Year collection 2021 and 2020 Journal of Materials Chemistry C most popular articles