Crosslinked metallo-polyelectrolytes with enhanced flexibility and dimensional stability for anion-exchange membranes†
Abstract
High-performing anion-exchange membranes (AEMs) have attracted tremendous interest for applications in emerging energy storage and conversion devices. Here we present a strategy for the synthesis of crosslinked metallo-polyelectrolytes as mechanically flexible, dimensionally stable and ionically conductive AEMs. The water uptake and swelling ratio are suppressed remarkably by introducing a crosslinked polymeric network. The as-prepared membranes also exhibit excellent thermal stability. The phase-separated morphology allows rapid ion-transport with low water uptake at various temperatures. Specifically, a conductivity of 53.3 mS cm−1 at 80 °C was achieved with an ion exchange capacity of 1.07 mmol g−1 and a low swelling ratio of 13%.
- This article is part of the themed collection: Polymer Chemistry Pioneering Investigators 2021