CO direct esterification to dimethyl oxalate and dimethyl carbonate: the key functional motifs for catalytic selectivity†
Abstract
The direct esterification of CO involves processes using CO as the starting material and ester chemicals as products. Dimethyl oxalate (DMO) and dimethyl carbonate (DMC) are two different products of the direct CO esterification reaction. However, the effective control of the reaction pathway and direct synthesis of DMO and DMC are challenging. In this review, we summarize the recent research progress on the direct esterification of CO to DMO/DMC and reveal the functional motifs responsible for the catalytic selectivity. Firstly, we discuss the microstructure of catalysts for the direct esterification of CO to DMO and DMC, including the valence state and the aggregate state of Pd. Then, the influence of characteristics of the support on the selectivity is analyzed. Importantly, the aggregate state of the active component, Pd is deemed as a vital functional motif for catalytic selectivity. The isolated Pd is conducive for the formation of DMC, while the aggregated Pd is beneficial for the formation of DMO. This review will provide rational guidance for the direct esterification of CO to DMO and DMC.
- This article is part of the themed collections: Recent Review Articles and Celebrating 60 years of the Fujian Institute of Research on the Structure of Matter