Perspectives regarding metal/mineral-incorporating materials for water purification: with special focus on Cr(vi) removal
Abstract
Metal/mineral-incorporating materials have received significant attention over the last decades given the outstanding adsorption behavior towards various pollutants, especially Cr(VI), in aqueous solutions. Here, the pattern of sorption of some pollutants with special focus on Cr(VI) removal over metal/mineral-incorporating materials has been compiled. Furthermore, the key influencing adsorption variables, i.e., pH, concentration at the beginning, contact time, and dosage of sorbent, were discussed while considering different material classifications. Different isothermal and kinetic models were elaborated. Langmuir and Freundlich's models are adopted as the main sorption isotherms, while the pseudo-second-order kinetic model is the most fitted heavy metal ion and Cr(VI) kinetic model in aqueous systems. The results revealed that metal/mineral-incorporating materials are quite effective for heavy metal (especially Cr(VI)) recovery from water and confirmed that these materials are affordable and reliable for contaminated water remediation. Also, several methods are available for the modification of these materials in order to increase their sorption efficiency. However, to establish the use of metal/mineral-incorporating materials for water purification compared with other established methods, more investigations are required to determine the best modification method and investigate the release of metals from these materials during sorption.
- This article is part of the themed collection: Popular Advances