Recent progress on highly sensitive perovskite photodetectors
Abstract
Perovskite photodetectors (PPDs), which combine the advantages of perovskite semiconductor materials with superior optical and electronic properties and solution-processed manufacturing, have emerged as a new class of revolutionary optoelectronic devices with potential for various practical applications. Encouraged by the development of various solution-synthesis and film-deposition techniques for controlling the morphology and composition of perovskite materials with interesting optoelectronic properties, increasing research attention is focused on the development of high performance PPDs. In this review, the recent progress on emerging PPDs is comprehensively summarized from the perspective of device physics and materials science. The strategies for extending the spectral response range of PPDs and improving the performance of devices are investigated. Furthermore, the methods for realizing narrowband photodetectors are also discussed, where filter-free and self-filter narrowband PPDs are achieved based on the concept of charge collection narrowing. Meanwhile, the promising future directions in this research field are proposed and discussed, including multifunctional PPDs, perovskite–organic hybrid photodetectors, flexible and transparent PPDs, self-powered PPDs, and photodetector systems and arrays. This review provides valuable insights into the current status of highly sensitive PPDs and will spur the design of new structures and devices to further enhance their photo-detection performances and meet the need of versatility in practical application.
- This article is part of the themed collections: Recent Review Articles, 2019 Journal of Materials Chemistry C HOT Papers and International Year of the Periodic Table : From Pb and Sn Perovskites to the Next Generation