Adaptable polyionic elastomers with multiple sensations and entropy-driven actuations for prosthetic skins and neuromuscular systems†
Abstract
A novel type of adaptable polyionic elastomers with rational molecular design is reported to address the dilemma encountered in soft electronic and ionic conductors. The conductivity of these elastomers is stable both during stretching and in air. The polyionic elastomers are highly transparent, 3D-printable, ultra-stretchable, self-healable, self-powered, and capable of sensing strain, stress, touch, humidity, temperature, etc. In addition, they can mimicking organisms with entropy-driven actuation and feedback. This type of materials contributes to prosthetic skins and neuromuscular systems and shows great potential for soft robotics and artificially intelligent applications.
- This article is part of the themed collection: Horizons Community Board Collection: Biosensors