Highly stable single Pt atomic sites anchored on aniline-stacked graphene for hydrogen evolution reaction†
Abstract
Developing efficient and cost-effective electrocatalysts for hydrogen evolution reaction (HER) is highly desired for the hydrogen economy. In this study, we developed a facile microwave reduction method to synthesize single Pt atoms anchored on aniline-stacked graphene (Pt SASs/AG) with outstanding HER performance. Pt SASs/AG presents excellent HER activity with η = 12 mV at 10 mA cm−2 and a mass current density of 22 400 AgPt−1 at η = 50 mV, which is 46 times higher than that of commercial 20 wt% Pt/C. Moreover, the Pt SASs/AG catalyst is highly active and more stable than Pt/C. X-ray absorption fine spectroscopy and density functional theory calculations demonstrated that the coordination of atomically isolated Pt with the nitrogen of aniline optimized the electronic structure of Pt and the hydrogen adsorption energy, eventually promoting HER activity. This study provides a new avenue for the development of single-atom Pt electrocatalysts with high activity and stability.
- This article is part of the themed collections: 2019 Energy and Environmental Science HOT Articles and 2018 Energy and Environmental Science HOT Articles