Lipid nanoemulsion passive tumor accumulation dependence on tumor stage and anatomical location: a new mathematical model for in vivo imaging biodistribution studies†
Abstract
Nanoparticle delivery to tumor tissue is one of the most important applications of nanomedicine. However, the literature shows that this pharmacological event is highly-affected by several tumor biology characteristics, including tumor size and maturation. Thus, the objective of the present study is to report on the investigation of the biodistribution of a lipid nanoemulsion (NE) in a breast cancer tumor model using in vivo imaging techniques. As highlights of this study, we can indicate that the biodistribution was measured in different tumor sites (primary and metastatic tumors) and in the same experimental mice for four subsequent weeks. With this approach it is possible to observe that the NE tumor delivery is significantly altered during tumor growth and metastasis progression. Furthermore, in the present report we introduce a phenomenological mathematical model that successfully explains the delivery behavior of a hydrophobic infrared fluorescent NE marker to both primary tumor and metastatic lesions. We believe that these data, in addition to the phenomenological mathematical model, are relevant to understanding how the stage of tumor development can alter macromolecule and/or nanoparticle delivery to tumor tissues, thus improving the efficacy of the passive delivery features promoted by tumor biology.
- This article is part of the themed collections: Materials and Nano Research in Brazil and Journal of Materials Chemistry B Emerging Investigators