Uniformly self-decorated Co3O4 nanoparticles on N, S co-doped carbon layers derived from a camphor sulfonic acid and metal–organic framework hybrid as an oxygen evolution electrocatalyst†
Abstract
The development of clean hydrogen-based energy technologies depends upon the rational design and synthesis of efficient and earth-abundant electrocatalysts. Despite great efforts, exploring cheap and unique design nanostructured materials for efficient electrocatalysis remains a big challenge. Here, we synthesize a porous co-doped carbon decorated with Co3O4 nanoparticles from pyrolysis of a camphor sulfonic acid and metal–organic framework hybrid. The uniformly self-decorated Co3O4 nanoparticles on N, S co-doped carbon layers (denoted as Co3O4/NSC) offer fast ion/electron transport and thus make the material an excellent oxygen evolution electrocatalyst. The resulting Co3O4/NSC shows an onset potential of 1.41 V versus the reversible hydrogen electrode (vs. RHE) and delivers an anodic current density of 10 mA cm−2 at 1.49 V vs. RHE, demonstrating fast kinetics for the oxygen evolution reaction (OER) with a small Tafel slope of 70 mV dec−1, making it superior to many state-of-the-art cobalt oxide-based catalysts recently reported in the literature.
- This article is part of the themed collection: Materials and Nano Research in Brazil