Polarization-manipulated all-optical cross-wavelength data inversion in a C-rich SiCx micro-ring
Abstract
With the use of a two-photon-absorption-free C-rich SiCx ring waveguide, the polarization-manipulated all-optical format inversion of a 12.5 Gbit s−1 pulsed return-to-zero on-off-keying (PRZ-OOK) data stream is demonstrated through the nonlinear Kerr switching-induced wavelength conversion process. The nonlinear refractive index of low-temperature plasma-enhanced chemical vapor deposition (PECVD)-synthesized C-rich SiCx is 1.37 × 10−12 cm2 W−1. The TE- and TM-mode polarization-dependent transmission spectrum of a C-rich SiCx ring waveguide with wavelength-separated spectral notches at an extinction ratio of 7 dB can be manipulated via detuning the orthogonal polarization of the incident pump pulse. Moreover, the modulation depth can be enlarged by more than 3 dB. An all-optical wavelength-converted and inverted PRZ-OOK data stream at 12.5 Gbit s−1 with a corresponding extinction rate (ER) of 7.8 dB, signal-to-noise ratio (SNR) of 8 dB and (bit error rate) BER of 2.85 × 10−10 is obtained, which confirms the functionality of such a C-rich SiCx ring waveguide based on pure Kerr switching for implementing ultrafast data processing in all-optical integrated circuits.
- This article is part of the themed collection: 2017 Journal of Materials Chemistry C HOT Papers