The effect of the ball to reactant ratio on mechanochemical reaction times studied by in situ PXRD†
Abstract
The effect of the reactant powder mass on reaction times for the mechanochemical formation of a soft matter model system was studied by in situ PXRD. The syntheses were performed at a constant ball mass in a shaker mill with and without glassy SiO2 as an inert additive. Reaction times decreased with the increase of the ball to reactant ratio (BRR). The kinetic influence of the SiO2 powder was excluded. The decrease in the reaction time with decreasing mass of reactants was related to the rise in the stress energy transferred to the powder by a higher ball impact. The BRR had no effect on the induction time. But the product conversion was accelerated by raising the BRR. While a certain temperature is needed for the activation of reactants in the induction phase, the conversion of soft matter reactants is rather controlled by impact than temperature.
- This article is part of the themed collection: Editor’s Collection: Mechanochemistry