Modular, polymer-directed nanoparticle assembly for fabricating metamaterials†
Abstract
We achieve the fabrication of plasmonic meta-atoms by utilizing a novel, modular approach to nanoparticle self-assembly that utilizes polymer templating to control meta-atom size and geometry. Ag nanocubes are deposited and embedded into a polymer thin-film, where the polymer embedding depth is used to dictate which nanocube faces are available for further nanocrystal binding. Horizontal and vertical nanocube dimers were successfully fabricated with remarkably high yield using a bifunctional molecular linker to bind a second nanocube. Surface plasmon coupling can be readily tuned by varying the size, shape, and orientation of the second nanoparticle. We show that meta-atoms can be fabricated to exhibit angle- and polarization-dependent optical properties. This scalable technique for meta-atom assembly can be used to fabricate large-area metasurfaces for polarization- and phase-sensitive applications, such as optical sensing.
- This article is part of the themed collection: Nanoparticle Assembly: From Fundamentals to Applications