A mechanistic study on the SHi reaction at tin atoms in a radical cascade reaction†
Abstract
A kinetic study on radical cascade reactions of 1,6-enyne compounds was undertaken. The efficiency of the reaction depended on the presence of an ester group at the alkene unit, which clearly suggests that the addition of a tin radical was accelerated by the α,β-unsaturated system. Stannolane formation progressed very quickly after a short induction period and completed within 12 min in the presence of Bu3SnH at 10−2 M concentration at 110 °C. Product ratios between stannolane and exo-methylene compound depended on the concentration of Bu3SnH; a linear relationship was observed between the ratios of the two and the concentration of Bu3SnH. These results clearly indicate that the SHi process is irreversible. The slope of the graph allowed us to estimate the ks value, the SHi reaction rate at the tin atom, as 4.23 × 108 s−1 at 303 K. The use of Bu2PhSnH for the reaction suggests that the SHi process partially progresses by the frontside attack of the vinyl radical, which generates a methylene radical that undergoes neophyl rearrangement to give methylene piperidine in a cis-selective manner.
- This article is part of the themed collection: Celebrating the 80th Birthday of Professor Ei-ichi Negishi