Issue 24, 2011

Detailed investigations of phase transitions and magnetic structure in Fe(iii), Mn(ii), Co(ii) and Ni(ii) 3,4,5-trihydroxybenzoate (gallate) dihydrates by neutron and X-ray diffraction

Abstract

The effect of cation valency on the complex structures of divalent and trivalent transition metal gallates has been examined using a combination of neutron and synchrotron X-ray powder diffraction, single-crystal X-ray diffraction and XANES spectroscopy. In the divalent frameworks, M(C7H4O5)·2H2O (M = Mn, Co and Ni), it was found that charge balance was achieved via the presence of protons on the meta-hydroxyl groups. It was also established that these compounds undergo a discontinuous phase transition at lower temperatures, which is driven by the position of the extra-framework water molecules in these materials. By contrast, in the trivalent Fe gallate, Fe(C7H3O5)·2H2O, it was found that the stronger bonding between the meta-hydroxy oxygen and the cations leads to a weakening of the bond between this oxygen and its proton. This is turn is thought to lead to stronger hydrogen bonding with the extra-framework water. The lattice water is disordered in the Fe(III) case, which prevents the phase transition found in the M(II) gallates. Refinement against the neutron diffraction patterns also revealed that the relatively mild microwave synthesis of gallate frameworks in D2O led to an extensive deuteration of the ortho-hydrogen sites on the aromatic ring, which may suggest a more versatile method of deuterating aromatic organics. The antiferromagnetic structure of Co gallate has also been determined.

Graphical abstract: Detailed investigations of phase transitions and magnetic structure in Fe(iii), Mn(ii), Co(ii) and Ni(ii) 3,4,5-trihydroxybenzoate (gallate) dihydrates by neutron and X-ray diffraction

Supplementary files

Article information

Article type
Paper
Submitted
02 dec 2010
Accepted
09 feb 2011
First published
07 mar 2011

Dalton Trans., 2011,40, 6401-6410

Detailed investigations of phase transitions and magnetic structure in Fe(III), Mn(II), Co(II) and Ni(II) 3,4,5-trihydroxybenzoate (gallate) dihydrates by neutron and X-ray diffraction

P. J. Saines, H. H.-M. Yeung, J. R. Hester, A. R. Lennie and A. K. Cheetham, Dalton Trans., 2011, 40, 6401 DOI: 10.1039/C0DT01687J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements