Transfer learning for chemically accurate interatomic neural network potentials†
Abstract
Developing machine learning-based interatomic potentials from ab initio electronic structure methods remains a challenging task for computational chemistry and materials science. This work studies the capability of transfer learning, in particular discriminative fine-tuning, for efficiently generating chemically accurate interatomic neural network potentials on organic molecules from the MD17 and ANI data sets. We show that pre-training the network parameters on data obtained from density functional calculations considerably improves the sample efficiency of models trained on more accurate ab initio data. Additionally, we show that fine-tuning with energy labels alone can suffice to obtain accurate atomic forces and run large-scale atomistic simulations, provided a well-designed fine-tuning data set. We also investigate possible limitations of transfer learning, especially regarding the design and size of the pre-training and fine-tuning data sets. Finally, we provide GM-NN potentials pre-trained and fine-tuned on the ANI-1x and ANI-1ccx data sets, which can easily be fine-tuned on and applied to organic molecules.
- This article is part of the themed collections: 2023 PCCP HOT Articles and Insightful Machine Learning for Physical Chemistry