A novel supramolecular self-assembling hybrid system for visible-light-driven overall water splitting†
Abstract
A hybrid supramolecular system for visible-light-driven overall water splitting has been successfully developed. The material is fabricated from a host–guest complex formed between a cyclodextrin-modified sensitizer and a phenyl-modified catalyst, serving as the oxidation compartment. Meanwhile, the reduction compartment is formed by electrostatic self-assembly of reduced graphene oxide and protonated graphitic C3N4, as well as passive loading of 0.5 wt% Pt. As a result, the photocatalytic overall water splitting can be realized in the ambient environment in the presence of only a sacrificial reductant, but with no need for a sacrificial oxidant. This is mainly because the reduced graphene oxide can act as an electron transporter to facilitate effective charge transfer from the oxidation compartment to reduction compartment. This work highlights an appealing approach of supramolecular self-assembly for conversion of solar energy into chemical fuels.
- This article is part of the themed collections: Materials Chemistry Frontiers Emerging Investigator Series 2022–2023 and 2022 Materials Chemistry Frontiers HOT articles