Confined in situ polymerization in a nanoscale porphyrinic metal–organic framework for fluorescence imaging-guided synergistic phototherapy†
Abstract
Engineering a versatile nanoplatform integrating imaging and therapeutic functions for efficient cancer treatment remains a grand challenge. Herein, a type of metal–organic framework (MOF)-based hybrid material for fluorescence imaging-guided synergistic phototherapy was prepared by in situ polymerization of a pyrrole (Py) monomer in the pores of a porphyrinic MOF. The resultant material (named PPy@MOF-525@HA) has a suitable size for cellular uptake, high degree of thermal stability and efficient photothermal conversion ability (η = 62.1%) upon near-infrared light irradiation, showing great potential for photothermal therapy. In addition, the porphyrinic MOF can trigger the generation of singlet oxygen (1O2) under the irradiation of visible light giving in vitro photodynamic therapy outcomes. Simultaneously, PPy@MOF-525@HA can also act as a contrast agent for cancer cell-specific targeting and fluorescence imaging to provide accurate guidance for cancer treatment. This work provides a promising platform for fluorescence imaging-guided synergistic phototherapy.
- This article is part of the themed collection: FOCUS: Recent progress on bioimaging technologies