A crystallographic approach to the short-range ordering problem in V1−xMoxO2 (0.50 ≤ x ≤ 0.60)†
Abstract
The V1−xMoxO2 phase diagram has high structural and electronic complexity that is driven by strong, short-range correlations that compete with the long-range rutile crystal structure. The substitution regime near 50% Mo occupancy is no exception, but there has so far been no significant progress in determining the actual structure. Reported here is a combined study using single crystal X-ray diffraction, powder X-ray diffraction, and representational analysis to examine both the local and crystallographically averaged atomic structures simultaneously near x = 0.50. Between about x = 0.50 and 0.60, the average structure of V1−xMoxO2 is the parent rutile phase, but the local symmetry is broken by atomic displacements that are best described using the orthorhombic subgroup Fmmm. This model is locally similar to the two-dimensionally ordered 2D-M2 phase recently reported in the compositional range 0.19 ≤ x ≤ 0.30, except the correlation length is much shorter in the 2D plane, and longer in the frustrated one, making it more isotropic. This work also extends the 2D-M2 phase regime up to x = 0.43, and suggests that the local-Fmmm phase observed here can be seen as the end result of the continued suppression of the 2D-M2 phase through enhanced geometric frustration between the intrinsic order parameters. This suggests that other doped-rutile phases with elusive structures may also be dominated by similar short-range correlations that are hidden in the diffuse scattering.
- This article is part of the themed collection: Journal of Materials Chemistry C Emerging Investigators