Peroxocobalt(iii) species activates nitriles via a superoxocobalt(ii) diradical state†
Abstract
The dioxygenation of nitriles by [CoIII(TBDAP)(O2)]+ (TBDAP = N,N-di-tert-butyl-2,11-diaza[3.3](2,6)-pyridinophane) is investigated using DFT-calculations. The mechanism proposed previously based on experimental observations, which invoked an outer-sphere cycloaddition, was found to be unreasonable. Instead, calculations suggest that an inner-sphere mechanism involving the cleavage of one of the Co–O bonds assisted by substrate uptake is much more likely. The reactively competent species is a triplet consisting of a Co(II)-superoxo functionality, which can undergo O–C bond formation and O–O bond cleavage traversing low energy transition states. The role of the structurally rigid TBDAP ligand is to prevent the participation of the pyridyl ligand in the delocalization of the unpaired electron density.
- This article is part of the themed collection: Inorganic Reaction Mechanisms