Control loading Au nanoparticles on the surface of hydroxyl pillar[5]arene functionalized single-walled carbon nanotubes and its application in catalysis and sensing†
Abstract
A facile and clean strategy is developed here to synthesize the Au@HP5@SWCNT nanocomposite via in-site loading of Au nanoparticles onto the surface of hydroxyl pillar[5]arene (HP5) functionalized single-walled carbon nanotubes (SWCNT). The process is achieved by π–π stacking and the coordination effect at room temperature, which avoids using toxic chemicals such as N2H4, NaBH4, and organic solvent. The Au nanoparticles with an average size of ∼10 nm are dispersed on the surface of SWCNT by the anchoring effect of HP5 that provides the coordination role between Au and the hydroxyl oxygen in HP5, and by the π–π interaction between SWCNT and the benzene rings of HP5. The obtained hybrid nanomaterial Au@HP5@SWCNT has shown high catalytic activity for the ethanol oxidation reaction (EOR), due to the small sized Au nanoparticles, and the sensitive sensing performance for p-dinitrobenzene (p-DNB) based on the excellent supramolecular host–guest recognition capability of HP5. This nanomaterial, Au@HP5@SWCNT, exhibits preeminent catalysis and sensing properties compared with others including SWCNT, Au@HP5, and HP5@SWCNT, and so has potential value in catalyzing, sensing, and in other fields.
- This article is part of the themed collection: 2019 Sustainable Energy and Fuels HOT Articles