Qingqing
Wu
,
Hatef
Sadeghi
* and
Colin J.
Lambert
*
Quantum Technology Centre, Physics Department, Lancaster University, LA1 4YB Lancaster, UK. E-mail: h.sadeghi@lancaster.ac.uk; c.lambert@lancaster.ac.uk
First published on 29th March 2018
We examine the potential of the low-dimensional material MoS2 for the efficient conversion of waste heat to electricity via the Seebeck effect. Recently monolayer MoS2 nano flakes with self-adaptive Mo6S6 contacts were formed, which take advantage of mechanical stability and chemical covalent bonding to the MoS2. Here, we study the thermoelectric properties of these junctions by calculating their conductance, thermopower and thermal conductance due to both electrons and phonons. We show that thermoelectric figures of merit ZT as high as ∼2.8 are accessible in these junctions, independent of the flake size and shape, provided the Fermi energy is close to a band edge. We show that Nb dopants as substituents for Mo atoms can be used to tune the Fermi energy, and despite the associated inhomogeneous broadening, room temperature values as high as ZT ∼ 0.6 are accessible, increasing to 0.8 at 500 K.
In the past couple of decades, although the thermoelectric performance of the bulk, thin films, and superlattices of Bi, Te, or Sb alloys materials have improved,9 they are not yet sufficiently efficient for future energy demands and furthermore, some of them are toxic with limited global supply.10 Recently the potential of the nanoscale devices composed of organic molecules or 2D materials sandwiched between metallic electrodes was recognized. Molecular-scale devices are particularly interesting, because their transport properties may be tailored by chemical modification of the active part of the device,11–14 varying the contacting configuration,15–17 device architecture18–20 and the Fermi level alignment by gating or doping.21–26 Despite the fact that the nanoelectronic systems are of great interest, it remains a challenge to identify suitable molecules and contacting strategies27,28 which overcome inhomogeneous broadening and junction variability.
Two dimensional materials provide an alternative approach to thermoelectricity in low-dimensional systems. Graphene is the most widely explored 2D material, but is not suitable since the pristine graphene does not have a bandgap and the material has a high in-plane thermal conductance. As an alternative to graphene, transition metal chalcogenides such as monolayer molybdenum disulfide (MoS2) may be attractive alternatives,29,30 since their band gaps could be used to optimise thermoelectricity. Here we show that this is indeed the case for monolayer MoS2, which has a direct bandgap of around 1.6 eV (see Fig. 1 in the ESI†).
Although some contacting strategies have been reported to characterize the electronic and thermoelectric properties of MoS2,20,31 the contacting to metallic electrodes remains a challenge. Recently, it was shown that using a focused electron beam, structures consisting of MoS2 connected directly to Mo6S6 could be formed.32 Mo6S6 nanowires (see Fig. S2 in ESI†) can be used as electrodes, because they possesses metallic properties and a robust structural conformation.33,34 Large scale production of MoS2 nano flakes with self-adaptive Mo6S6 contacts is possible, since their electronic structures are insensitive to the shape of MoS2 monolayers.32 Furthermore, it has been reported that parallel-wire bundles of Mo6S6 nanowires are metallic and mechanically stable.35 Mo6S6 nanowires might therefore be used as a flexible nano wires in electronic devices, because bending does not significantly change their electronic properties.36
Although these junctions have been realized, their potential as thermoelectric devices is unexplored. These devices are advantageous, because they provide new direct and covalent contacting possibilities to MoS2 edges. Furthermore, MoS2 has shown high thermopower and thermoelectric properties using other contacting strategies.20,31 In what follows, we show that flexible routes to tailoring their thermoelectric properties such as doping or gating of both MoS2 and Mo6S6 make such devices very attractive for future thermoelectricity.
Fig. 1 (a) Schematic of Mo6S6 nanowire–Mo2S–Mo6S6 nanowire junction. (b) The Mo6S6–Mo2S–Mo6S6 junction used in the simulation: yellow atoms represent sulphur and green represents molybdenum. |
Fig. 1 shows a thermoelectric device consisting of a central MoS2 monolayer connected to Mo6S6 nanowires as current-carrying leads. The device geometry is similar to that obtained experimentally32 by steering a focused electron beam onto a single MoS2 monolayer. After making holes in the monolayer, the remaining slab reconstructs to form self-adaptive Mo6S6 leads contacted to MoS2 nano flakes.32
Fig. 2 shows the electron transmission coefficient obtained from the density-functional-theory (DFT) mean field Hamiltonian of the converged ground state geometry of the device (see methods for more details) shown in the Fig. 1b. There exists a transmission gap of approximate 1.65 eV for electron energies E between −0.55 eV and 1.1 eV (relative to the DFT-predicted Fermi energy EDFTF). This is due to the gap of the pristine two-dimensional Mo2S (see Fig. S1 in the ESI†) and is in good in agreement with previous studies.30,37 It is known that a step-like transmission coefficient can lead to a high Seebeck coefficient, provided the Fermi energy EF lies close to such steps.8,38 In our case, the step like transmission functions around EF − EDFTF = −0.55 eV and 1.1 eV are due to the valance and conduction bands of MoS2.
Fig. 2 Electron transmission of the junction in Fig. 1. |
From the transmission function in Fig. 2, the conductance, the Seebeck coefficient, the thermal conductance due to the electrons and electronic thermoelectric figure of merit can be obtained (see methods). Fig. 3a shows the electrical conductance for different Fermi energies at room temperature. Due to the thermal averaging of T(E) around −0.55 eV and 1.1 eV, two peaks are obtained around these energies. They also have high slope and therefore, a high Seebeck coefficient is also obtained around these energies (Fig. 3b). Fig. 3c and d show the electronic thermal conductance and the electronic contribution to the figure of merit ZTe. Fig. 3d depicts the variation of ZTe with the Fermi energy. There appear three large resonances up to 50, 100 and 80 around −0.5, 0.5 and 1 eV. In Fig. 3, the red solid curves are exact values obtained using eqn (2)–(5). The blue dashed curves show the prediction of the Wiedemann-Franz law, which is valid provided T(E) varies approximately linearly with E near E = EF on the scale of kBT. Although the two are in close agreement, the Wiedemann-Franz law tends to overestimate the thermal conductance due to electrons and therefore underestimate ZTe. However, ZTe neglects the contribution from phonons in the denominator and therefore to obtain the full ZT, we now compute the thermal conductance due to phonons.
The results of our phonon transport calculation are shown in Fig. 4, where Fig. 4a shows the phonon transmission spectrum and Fig. 4b shows the corresponding phonon thermal conductance. Compared to the electronic thermal conductance within the gap, the phonon (0.044 nW K−1) contribution to thermal conductance is much higher. Consequently, the total ZT is lower than ZTe. As shown in Fig. 5, a value as high as ZT ∼ 2.8 at 300 K is obtained around EF = −0.5 eV, which is higher than unity and higher than currently-reported values for other materials at room temperature.39–41 Two peaks in the thermoelectric figure of merit curve at −0.5 eV and 1 eV are due to two step-like transmission features at −0.5 eV and 1 eV.
Fig. 5 (a) The thermoelectric figure of merit at 300 K for the structure shown in Fig. 1(b). (b)–(d) The thermoelectric figure of merit as a function of temperature for three particular Fermi energies (EF − EDFTF = −0.2 eV, EF − EDFTF = 0 eV, EF − EDFTF = 0.2 eV) for the structure shown in Fig. 1(b). These calculations are valid provided the forces entering the phonon dynamical matrix are harmonic. Anharmonic effects are negligible, provided the temperature does not approach the melting point of the material. The melting point of MoS2 is greater than 1400 K and therefore we have restricted our analysis to approximately half that value. |
To demonstrate that the high ZT at EF − EDFTF = −0.5 eV and 1 eV is due to the valence and conduction bands of MoS2 and not an edge effect, we consider other junctions shown in Fig. S3 and S5 in the ESI,† obtained by increasing the size of the sample, changing the edge shape and applying periodic boundary conductions in transverse direction. Fig. S3–S5† show that their corresponding transmission coefficients possess two main features: step-like transmission features associated with the valence and conduction bands of the MoS2 monolayer around E = −0.5 eV and 1 eV and sharp resonances with small width inside the gap. Local density of states calculations around the DFT Fermi energy (Fig. S4 in the ESI†) reveal that these resonances are due to localized states at the edges of MoS2 and are sensitive to the shape of the edges and size of the flake. However, the features due to the valence and conduction bands of MoS2 are resilient and are less dependent on the details of the junction. Furthermore, the transmission amplitude and slope is higher close to the conduction and valence band edges, which is promising for an efficient thermoelectric device. High ZT is therefore obtained regardless of the shape of the MoS2 flake as shown in Fig. S8 in the ESI† at EF − EDFTF = −0.5 eV and 1 eV. These results indicate that the higher ZT peak is mainly due to the valence band edge of the MoS2 monolayer and the edge states do not play a significant role.
In reality, the Fermi energy may be determined by extrinsic factors such as doping. Indeed Nb atoms were used in the past to tune the Fermi energy of MoS2 to form a p-type semiconductor.21,23 To demonstrate that in the presence of dopants, a high ZT is accessible in these devices, we now show that in the both Mo6S6 electrodes and MoS2 flakes, Nb doping can be used to shift the position of the valence band edge towards the Fermi energy. Fig. S9 of the ESI† shows results for six different dopant configurations. By replacing Mo atoms by Nb substituents in the monolayer MoS2 flake, the Fermi level shifts towards the valence band and simultaneously new transmission peaks due to defect states near the valence band are formed. The precise value of ZT is sensitive to the positions and concentration of the dopants, because multiple scattering of electrons between dopants placed in the different locations, causes the transmission coefficient to change (Fig. S9 in the ESI†). In a real device consisting of many structures such Fig. 1b and Fig S9,† placed in parallel, the ensemble average of transport coefficients are relevant, as defined by the equations in section 10 of the ESI.†Fig. 6a shows the resulting ensemble averaged figure of merit ZTavversus Fermi energy at one particular temperature and Fig. 6(b–d) show ZTav as a function of temperature for three different Fermi energies. Fig. 6b shows that even after allowing for inhomogeneous broadening due to random locations of dopants, room temperature values of ZTav = 0.6 are possible, increasing to 0.8 at 500 K.
Fig. 6 (a) The ensemble average of the total thermoelectric figure of merit at 300 K for the configurations with p-type dopants Nb replacing Mo atoms in ESI Fig. S9.† (b)–(d) The ensemble average of the total thermoelectric figure of merit as the function of temperature when EF − EDFTF = −0.2 eV, EF − EDFTF = 0 eV, EF − EDFTF = 0.2 eV for the configurations with p-type dopants Nb replacing Mo atoms in ESI Fig. S9.† |
T(E) = Tr[ΓR(E)GR(E)ΓL(E)GR†(E)] | (1) |
G = G0L0 | (2) |
(3) |
(4) |
(5) |
(6) |
(7) |
The electrical conductance G, Seebeck coefficient S and thermal conductance due to electrons κe can be combined to obtain electronic thermoelectric figure of merit ZTe. By including the thermal conductance due to phonons κp, the total thermoelectric figure of merit ZT is calculated. T is the mean temperature (T1 + T2)/2, G0 = 2e2/h is the conductance quantum; h is the Planck's constant; e is the charge of electron; f(E) = (1 + exp(E − EF/kBT))−1 is the Fermi–Dirac probability distribution function and EF is the Fermi energy. The relationship between ZT and the power efficiency is discussed in section 11 of the ESI.†
Footnote |
† Electronic supplementary information (ESI) available. See DOI: 10.1039/c8nr01635f |
This journal is © The Royal Society of Chemistry 2018 |