Issue 10, 2018

Concentrated mixed cation acetate “water-in-salt” solutions as green and low-cost high voltage electrolytes for aqueous batteries

Abstract

Electrolyte solutions are a key component of energy storage devices that significantly impact capacity, safety, and cost. Recent developments in “water-in-salt” (WIS) aqueous electrolyte research have enabled the demonstration of aqueous Li-ion batteries that operate with capacities and cyclabilities comparable with those of commercial non-aqueous Li-ion batteries. Critically, the use of aqueous electrolyte mitigates safety risks associated with non-aqueous electrolytes. However, the high cost and potential toxicity of imide-based WIS electrolytes limit their practical deployment. In this report, we disclose the efficacy of inexpensive, non-toxic mixed cation electrolyte systems for Li-ion batteries that otherwise provide the same benefits as current WIS electrolytes: extended electrochemical stability window and compatibility with traditional intercalation Li-ion battery electrode materials. We take advantage of the high solubility of potassium acetate to achieve the WIS condition in a eutectic mixture of lithium and potassium acetate with water-to-cation ratio as low as 1.3. Our work suggests an important direction for the practical realization of safe, low-cost, and high-performance aqueous Li-ion batteries.

Graphical abstract: Concentrated mixed cation acetate “water-in-salt” solutions as green and low-cost high voltage electrolytes for aqueous batteries

Supplementary files

Article information

Article type
Paper
Submitted
21 mar 2018
Accepted
09 júl 2018
First published
16 júl 2018

Energy Environ. Sci., 2018,11, 2876-2883

Author version available

Concentrated mixed cation acetate “water-in-salt” solutions as green and low-cost high voltage electrolytes for aqueous batteries

M. R. Lukatskaya, J. I. Feldblyum, D. G. Mackanic, F. Lissel, D. L. Michels, Y. Cui and Z. Bao, Energy Environ. Sci., 2018, 11, 2876 DOI: 10.1039/C8EE00833G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements