Low-temperature plasma-enhanced atomic layer deposition of tin oxide electron selective layers for highly efficient planar perovskite solar cells†
Abstract
Recent progress has shown that low-temperature processed tin oxide (SnO2) is an excellent electron selective layer (ESL) material for fabricating highly efficient organic–inorganic metal-halide perovskite solar cells with a planar cell structure. Low-temperature processing and a planar cell structure are desirable characteristics for large-scale device manufacturing due to their associated low costs and processing simplicity. Here, we report that plasma-enhanced atomic layer deposition (PEALD) is able to lower the deposition temperature of SnO2 ESLs to below 100 °C and still achieve high device performance. With C60-self-assembled monolayer passivation, our PEALD SnO2 ESLs deposited at ∼100 °C led to average power conversion efficiencies higher than 18% (maximum of 19.03%) and 15% (maximum of 16.80%) under reverse voltage scan for solar cells fabricated on glass and flexible polymer substrates, respectively. Our results thus demonstrate the potential of the low-temperature PEALD process of SnO2 ESLs for large-scale manufacturing of efficient perovskite solar cells.
- This article is part of the themed collections: JMC A Editor’s choice collection: Recent advances in photovoltaics and 2016 Journal of Materials Chemistry A HOT Papers