Metal–organic frameworks and their derived nanostructures for electrochemical energy storage and conversion
Abstract
Metal–organic frameworks (MOFs) have received a lot of attention because of their diverse structures, tunable properties and multiple applications such as gas storage, catalysis and magnetism. Recently, there has been a rapidly growing interest in developing MOF-based materials for electrochemical energy storage. MOFs have proved to be particularly suitable for electrochemical applications because of their tunable chemical composition that can be designed at the molecular level and their highly porous framework in which fast mass transportation of the related species is favorable. In this review, the recent progress in fabricating MOFs and MOF-derived nanostructures for electrochemical applications is presented. The review starts with an introduction of the principles and strategies for designing targeted MOFs followed by a discussion of some novel MOF-derived structures and their potential applications in electrochemical energy storage and conversion. Finally, major challenges in electrochemical energy storage are highlighted and prospective solutions from current progress in MOF-based nanostructure research are given.
- This article is part of the themed collection: 2015 most accessed Energy & Environmental Science articles