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Today’s growing energy demands require unique solutions. Structural energy and power devices 
offer one such solution by providing a device that can accomplish two objectives at once: storing 
energy and withstanding mechanical loads. This device would reduce the mass and volume 
required to power modern devices such as electric vehicles or enable flexible electronics that are 
common in wearable technology. However, there is a lack of suitable materials due to an 
inherent trade-off between the electrochemical and mechanical performance. Therefore, 
materials design is a promising strategy for discovering novel materials for structural energy 
storage devices. In this paper we present on the use of data driven modelling for the design of 
multifunctional materials consisting of reduced graphene oxide, aramid nanofibers, and carbon 
nanotubes for use as structural electrodes in supercapacitors. Experimental data was used along 
with Gaussian process regression to predict and optimize the performance of the electrodes in an 
iterative manner. This work reports on the design of multifunctional materials using materials 
informatics for efficient exploration and exploitation of the design space. 

Page 1 of 10 Molecular Systems Design & Engineering



Molecular Systems Design & Engineering

ARTICLE

This journal is © The Royal Society of Chemistry 20xx Mol. Syst. Des. Eng., 2018, 00, 1-3 | 1 

Received 00th January 20xx,
Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

www.rsc.org/

Design of Multifunctional Supercapacitor Electrodes using an 
Informatics Approach
Anish G. Patela, Luke Johnsonb, Raymundo Arroyaveb, and Jodie L. Lutkenhaus*a,b

Multifunctional energy storage devices can greatly impact public safety and flexible electronics. For example, mechanically 
strong energy devices can prevent catastrophic failure in batteries or act as structural elements, simultaneously dissipating 
energy and bearing a load. Herein we report on a nanoarchitectronic approach, which implements an optimal experimental 
design framework, to optimize the electrochemical and mechanical properties of a composite electrode. First, functional 
analysis was used to identify weight percentages of the electrode components as control variables of interest in this material 
system. A utility function was then developed to measure the tradeoffs between electrochemical and mechanical properties. 
Finally, Gaussian process regression was used to model initial experimental data and optimal compositions were predicted 
using expected improvement acquisition methods.

1. Introduction
Currently, much research has gone into improving the energy storage 
capabilities of promising materials, such as reduced graphene oxide1-

5, due to growing energy demands. The focus on electrochemical 
properties ignores other performance metrics of the materials. As a 
result, current energy storage devices are prone to catastrophic 
failure6-9 and are unfit for flexible or structural electronics. 
Multifunctional energy storage materials, which can simultaneously 
deliver energy and bear a mechanical load, are a new way to 
fabricate flexible, bendable, and structural batteries and 
supercapacitors.10-17 However, there is an inherent tradeoff between 
electrochemical and mechanical performance for multifunctional 
composite materials.16,18-20 Wetzel quantified this tradeoff using a 
“multi-functional efficiency”, or utility, which is an equally weighted 
linear combination of mechanical and electrochemical properties.21 
Including mechanical properties as a performance metric for energy 
storage devices can improve the effective functionality of the overall 
designed component by providing new opportunities for a wide 
variety of design cases.16,17,22,23 Coupling this multifunctional design 
with machine learning, which has been used recently in materials 
science to aid in the discovery and understanding of novel 
materials,24-30 can provide an effective means of designing structural 
electrodes while minimizing experimental costs and time. 

Recently, we have studied structural supercapacitors containing 
reduced graphene oxide (rGO) and Kevlar aramid nanofibers 
(ANFs).18,19 Reduced graphene oxide, derived from graphene oxide 
(GO), is a well-studied two-dimensional carbon material that is 
commonly used in supercapacitors due to its excellent electrical 
conductivity, high surface area, and good chemical stability.31,32 Bulk 
Kevlar fibers possess a Young’s modulus of 90 GPa and tensile 
strength of 3.8 GPa making it an ideal additive for enhancing the 

stiffness and strength of composite materials.33 ANFs are nanoscale 
Kevlar fibers formed from the dissolution of the bulk fibers.34 They 
are promising building blocks for nanocomposite materials due to 
their excellent mechanical properties and easy processability. 
Incorporating ANFs with rGO allows for the nanofibers to act as a 
mechanically reinforcing nanofiller that also prevents the restacking 
of graphene sheets.19 This is due to hydrogen-bonding35,36 and 
aromatic stacking37,38 (or π-π stacking), which lead to strong 
interactions between the two materials. These interactions result in 
greatly improved mechanical performance.18,19,35,36 ANFs have also 
been shown to improve the mechanical properties in other 
composites.18,19,35,36,39-42 

Carbon nanotubes (CNTs) are of interest here as additives to the 
graphene/ANF electrode for several reasons. CNTs are rod-like 
nanoparticles that are well known for their high electrical 
conductivity and exceptional mechanical performance making them 
an ideal nanomaterial for composite electrodes.43-45 Carbon 
nanotubes have been used as supercapacitor electrodes46 but they 
are more commonly used as an additive to increase the 
electrochemical performance and/or mechanical capabilities (i.e. 
flexible electrodes).47-50 While graphene is an excellent electrode 
material for supercapacitors, its propensity to agglomerate and 
restack significantly impedes electrochemical stability.5,51 Therefore, 
the use of an additive that prevents restacking, such as CNTs, leads 
to an improvement in electrochemical performance. It has been 
shown that CNTs act as a conductive bridge between graphene 
sheets to prevent agglomeration and promote conductive 
pathways.52,53 Carbon nanotubes have also been used in composites 
with polyaniline49 and manganese oxide50 to achieve similar results. 

There has been a rapid rise in the use of machine learning in 
materials science, which has led to the acceleration of the materials 
discovery process.24,27,54-60 The need for materials informatics partly 
arises from the large cost of running experiments when attempting 
to find optimal compositions. For example, fabricating and fully 
characterizing one of the aforementioned rGO/ANF electrodes can 
take up two weeks.18 Materials informatics provides powerful tools 
that can take advantage of previously generated data to better 
understand the relationships between processing, properties, and 
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performance in order to predict new materials without the 
traditional costs associated with experimental work. Currently, there 
has been no work on using data science to better understand current 
materials, discover new materials, or guide experimental design in 
the area of structural energy materials. Due to recent successful 
implementations of informatics in materials science,24-26,28-30,61,62 
machine learning methods are a promising alternative to traditional 
experimental approaches used for fabricating multifunctional energy 
storage electrodes. 

Here we present the first use of machine learning on the design 
of structural electrodes for energy and power. We first refine and re-
examine Wetzel’s utility metric in order to broaden its applicability 
to a wider design space. By doing so, we present a customizable 
utility function that allows the user to adjustably weight the 
electrochemical and the mechanical performance metrics. This utility 
function guides the design of the electrodes toward different regions 
of the design space based on the application. The primary degrees of 
freedom in the material system considered in this work are the 
weight percentages of the electrode's constituents 
(rGO/ANFs/CNTs). Herein, we focus on the combination of data 
science and experiments to establish high-level connections 
between composition and the electrochemical and mechanical 
properties. Data driven models, in the form of Gaussian processes, 
are used to establish links between composition and performance 
without any knowledge of the complex physical interactions within 
the electrode. These models are used to predict compositions with 
promising combinations of properties which are then validated 
experimentally, within a Bayesian optimization framework. This 
process is performed multiple times, creating a feedback loop for 
efficient exploration of the design space. We apply this methodology 
to the rGO/ANF/CNT supercapacitor system as a test case.

2. Methodology
2.1 Design Problem
In order for these tools to be combined in an effective way it is 
necessary to establish a description of the system in terms of 
functional dependencies. This is first done at the component level to 
better understand how a structural energy storage device might 
operate within an overall system. The component level functional 
model indicates the appropriate performance metrics and properties 
to consider in the material level functional model. The material level 
functional model captures relationships between process, structure, 
properties, and performance in the form of a system chart similar to 
the type outlined in Olsen’s report on the design of materials.63 The 
material level functional model allows for a fair assessment of how 
to best combine data, models, and experiments at the appropriate 
levels of abstraction.

A functional diagram for a structural electrode is used to better 
understand the relationships between inputs and outputs at the 
component level, Figure 1a. Also, it is used to inform decisions 
concerning the best way to manipulate functions and sub-functions 
to achieve objectives and goals. At the component level, Figure 1a, 
the function of a structural electrode is to store and deliver energy 
to a system while still being safe and stable after sustaining 
mechanical loads and forces. This requires the consideration of both 
electrochemical and mechanical requirements.21

As stated above, the three potential materials of interest for 
designing a multifunctional energy storage device are graphene, 
ANFs, and CNTs. The system chart, Figure 1b, summarizes the 
fundamental functional interactions between the various levels of 
the process-structure-properties (PSP) hierarchy for composite 
electrodes that contain these components. For example, 

composition directly affects composite interactions and porosity of 
the structure, which, in-turn, affect the electrochemical and 
mechanical properties listed.

In order to effectively design a new material, the mechanical and 
electrochemical properties should be combined into a single 
performance metric (U, which varies from 0 to 1) through a utility 
function which combines electrochemical utility (ECU) and 
mechanical utility (MU). Equations 1-3 define the utility based on a 
combination of various performance metrics where a is a weighting 
coefficient (which varies from 0 to 1), C is the specific capacitance of 
the electrode at different scan rates ν, T is the toughness, σ is the 
ultimate tensile strength, E is the Young’s modulus, and ε is the strain 
at break. These performance metrics were normalized by the typical 
values for pure reduced graphene oxide electrodes and pure ANF 
films denoted by subscript rGO and subscript ANF, respectively. This 
means that the ternary composite materials are being compared 
against pure reduced graphene oxide, a commonly investigated 
material for supercapacitor electrodes, and pure ANF which is known 
for its mechanical properties. This allows the utility function to reflect 
the change in performance relative to the highest performing unary 
component. ECU describes the capacitance values at 6 different scan 
rates (ν = 1, 5, 10, 20, 50, and 100 mV s-1) to take both energy storage 
and rate capability into account. MU examines 4 important metrics 
for structural materials and combines them with equal weighting. 

Figure 1. (a) Component level functional diagram of a typical 
structural electrode where ME is mechanical energy, EE is electrical 
energy, and CE is chemical energy. In this diagram, the structural 
electrode can discharge electrical energy while also safely handling 
mechanical loads. (b) Material level system chart of the interactions 
between process, structure, and properties within a composite 
electrode consisting of ANFs, graphene, and CNTs.

Page 3 of 10 Molecular Systems Design & Engineering



Journal Name  ARTICLE

This journal is © The Royal Society of Chemistry 20xx J. Name., 2013, 00, 1-3 | 3

The value of a is chosen to bias the relative importance of 
electrochemical performance against mechanical performance 
based on the intended application. For this work, a was set to 0.5.

𝑼 = (𝟏 ― 𝒂)𝑬𝑪𝑼 + (𝒂)𝑴𝑼 (1)
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2.2 Model Development
2.2.1 Data 
High quality data is required to form effective data-driven 
computational models. The primary source of data for this work is 
experimental data generated in-house regarding electrochemical 
and mechanical properties of rGO/ANF/CNT composite electrodes. 
There are many advantages associated with using this dataset. For 
example, using a single set of experimental data eliminates many 
potential confounding features such as processing method, slight 
variations in characterization techniques, and sample dimensions 
because many design variables are controlled and held constant. If 
external sources of data (regarding the raw materials or binary 
composites) were used, additional features would be needed to 
properly model the data. This would prevent experimental validation 
due to lack of appropriate processing equipment.

While using one set of experimental data is beneficial, there are 
also challenges to this approach. The experimental data available 
only explores a small portion of the entire design space as shown in 
Figure 2. This may cause problems in modeling the entire space 
because the model will have inaccurate predictions away from the 
data heavy corner. However, it is not necessary to explore the entire 
design space. Previous work in the area of multifunctional 
composites show that using ANFs or CNTs as additives (in small 
quantities) provides a large enhancement in mechanical and 
electrochemical performance, respectively.33,35,36,39-42,50,53 Also, 
exploring high graphene content composites better tailors this 
analysis to energy storage applications since graphene acts as the 
primary electroactive component in the composite. Reducing the 
design space to consider only high graphene content and low ANF 
and CNT content will provide the best analysis into multifunctional 
energy storage devices with the current experimental dataset 
available. 

2.2.2 Regression
A model is fitted to the experimental data and used to guide future 
experimental work. These guided experiments are then used to 
update the model so better predictions can be made in the next 
iteration. A schematic of this feedback loop is shown in Figure 3. This 
synergistic framework, combining experiments and modeling for the 
purpose of optimal experimental design, is inspired directly by 
research by which has laid the groundwork for efficient global 
optimization (EGO) of expensive functions in general64 and, more 
recently, in material science.65 In these works, Gaussian process 
models (GPMs) are fitted to available data and then coupled with an 
optimality metric called expected improvement (EI) which balances 
exploration and exploitation of the design space. 

In order to effectively create a model from this dataset, 
appropriate representations of the expected response surface of 
such a model must be established. GPMs describe the expected 

behavior of the experiment’s response surface according to the 
sensitivity of the data to each control variable, and the (statistical) 
correlation between points in the design space. The GPM is a non-
parametric model such that there is no assumed functional form of 
the solution. As such, the model avoids the issue of underfitting or 
overfitting. Sensitivity and correlation are encoded in a “kernel 
function” through the use of hyperparameters which represent the 
characteristic length and correlation distance of the response 
surface, respectively. Selection of the kernel’s functional form 
(Matern, radial basis functions (RBF), etc.) is often based on the 
expected nature of the response surface a priori. Multiple kernels are 
tested and compared based on their predicted surfaces. With an 
appropriate kernel and relevant hyperparameters defined, the GPM 
is fitted to a dataset by finding hyperparameter values that minimize 
the error between the response surface and the data points. The 
GPM, with optimized hyperparameters, is then used to predict the 
mean and variance of the response surface for the entire design 
space. The models are obtained from Scikit-learn, a free machine 
learning library. Kennedy et al. also detail the Bayesian calibration 
process employed in Gaussian process regression.66

Predicted response surfaces of GPMs were then used, in 
conjunction with a leave-one-out (LOO) cross validation technique, 
to find the most predictive feature set. Four feature sets (ANFs/rGO, 
ANFs/CNTs, rGO/CNT, rGO/ANF/CNT) were analyzed using this 
technique. In LOO analysis, one point is removed from the dataset 
and the model is trained on the remaining data. The error of the 
model is calculated as the difference between the model’s predicted 
value and the actual value at the removed point. This process is 
repeated until all data points have been sampled. Each feature set is 
analyzed with this approach and the resulting distribution of errors 
are compared to select the best feature set. A summary of these 
analyses is given in the Results section.

Once the final GPM and feature set combination is determined, 
the mean and variance predictions of the model are used with an 
acquisition criterion to select new potential experiments. The choice 
of acquisition criteria depends on the objective of the design 
problem. Since the objective of this work is to optimize the 
performance of a supercapacitor electrode, criteria that seek the 
optimum value in a design space were chosen: Upper Confidence 
Bound (UCB), Probability of Improvement (PI), and Expected 
Improvement (EI). It is important to note that materials informatics 
methods can also be used to identify properties that conflict with the 
design goal, as this would also provide valuable knowledge, however, 

Figure 2 Ternary diagram describing the design space for 
rGO/ANF/CNT supercapacitor electrodes. Original experimental 
data are plotted with red circles while predicted compositions 
which were then validated experimentally validated are plotted 
with blue circles.
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it is used here to identify the best composition for future 
experimental design work.  

UCB, the simplest approach, selects new experimental points by 
finding the maximum value when the mean and variance surfaces are 
added together. While easy to calculate, UCB has the drawback of a 
slow convergence rate if the predicted variance dominates the mean 
response. PI selects the next experiment by finding the point in the 
design space that has the largest region of its probability distribution 
above a predefined target value of the optimization. This target value 
is typically selected as the best point found so far plus a constant 
value. The magnitude of this constant term determines the behavior 
of the search criteria with large values promoting exploration and 
small values promoting exploitation. The main issue with PI is the 
need to select this target offset a priori. EI extends the idea of PI by 
including information about the centroid of the same area 
considered by PI. By using the centroid, EI considers both probability 
and magnitude of the improvement.67 This provides a balance 
between exploration and exploitation in which points that have 
lower probability but larger magnitudes of improvement can be 
selected over points with higher probability but lower potential 
improvement in the response surface. Analysis of these acquisition 
criteria for this particular design problem can be seen in section 3.2 
below. Finally, the efficacy of EGO to balance exploration of the 
design space and exploitation of promising areas is thoroughly 
proven by Jones et al.64 Thus, the model can obtain a global 
optimality and avoid local minima.  

All code and data pertaining to this work is available on Github 
under the repository titled Design-of-Multifunctional-
Supercapacitor-Electrodes-using-an-Informatics-Approach. 
(https://github.com/AnishGPatel/Design-of-Multifunctional-
Supercapacitor-Electrodes-using-an-Informatics-Approach)

2.3 Experimental
2.3.1 Electrode Characterization
Briefly, rGO/ANF/CNT electrodes were fabricated using vacuum 
filtration of a graphene oxide/ANF/CNT dispersion in dimethyl 
sulfoxide (DMSO). The electrode was dried and thermally reduced to 
obtain flexible and free-standing electrodes, Figure 4a-c. For more 
detailed experimental methods, see section S1 in Supplementary 
Information.

The composite electrode’s thickness was characterized using 
scanning electron microscopy (SEM, JEOL JSM-7500F). Average 
thicknesses of 15-30 µm were obtained. Cross-sectional SEM imaging 
of the composite revealed a tightly packed and layered structure, 
Figure 4d-e. However, the ANFs and CNTs were not directly observed 
due to their small size and low loading in the composite. CNTs were 
characterized using transmission electron microscopy (TEM, JEOL 
JEN-2010), Figure S1. Samples were prepared by drop casting a 
solution of CNT in DMSO directly onto a TEM grid.

Electrochemical characterization was carried out using cyclic 
voltammetry (CV) on both a Gamry potentiostat and Arbin 
instrument (Gamry Interface 1000, Gamry Instruments and Arbin). 
The electrochemical performance was tested using a two-electrode 
symmetric coin cell with 6M KOH as the electrolyte. The coin cell 
consisted of, from bottom to top, a bottom metal covering, carbon 
paper current collector, electrode, electrolyte, separator (Celgard 

Figure 3. Schematic showing feedback between experimental data 
and the computational model. EI is expected improvement and EGO 
is efficient global optimization.

Figure 4. Digital images of (a) an rGO electrode and (b-c) an rGO/ANF 
composite electrode (no CNTs). Cross-sectional SEM images of (d) an 
rGO/ANF electrode without CNTs (95/5 wt % rGO/ANF) and (e) with 
20 wt % CNTs (76/4/20 wt % rGO/ANF/CNTs). (f) A representative 
cyclic voltammogram and (g) a typical stress-strain curve for an 
rGO/ANF/CNT composite electrode (90.25 rGO wt %, 4.75 ANF wt %, 
5 CNT wt %).   
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3501), electrolyte, electrode, current collector, spacer, spring, and 
metal covering. The electrodes were prepared by cutting a 16 mm 
circle sample out of the composite electrode. Cyclic voltammetry was 
conducted at varying scan rates from a voltage of 0 to 1 V. Specific 
capacitance (F g-1) was calculated from CV curves using Equation 4, 
where m is the mass of the two electrodes (g), ν is the scan rate (V s-

1), ΔV is the voltage range (V), Vl is the low-voltage cutoff (V), Vh is 
the high-voltage cutoff (V), and I is the current (A). Figure 4f shows a 
CV curve for a rGO/ANF/CNT composite with 90.25 rGO wt %, 4.75 
ANF wt %, and 5 CNT wt % at 20 mV s-1. The electrode stores energy 
through electric double layer (EDL) capacitance. This is evident 
through the lack of redox peaks in the CV curves and the rectangular 
shape of the curve, which indicates ideal capacitive behavior. 

𝐶 =  
2

𝑚𝜈Δ𝑉∫
𝑉ℎ

𝑉𝑙

𝐼(𝑉)𝑑𝑉
(4)

Mechanical performance was evaluated using quasi-static uniaxial 
tensile testing using a dynamic mechanical analyser (DMA Q800, TA 
Instruments). The electrode was cut into rectangular strips 
approximately 2.5 mm in width, 20 mm in height, and thicknesses 
ranging from 15 to 30 µm. The electrode samples were gripped using 
a thin film tension clamp with a clamp compliance of about 0.2 µm 
N-1, and the tensile tests were conducted in controlled strain rate 
mode with a preload of 0.02 N and a strain ramp rate of 0.1 % min-1. 
A typical stress-strain curve of a rGO/ANF/CNT composite with 90.25 
rGO wt %, 4.75 ANF wt %, and 5 CNT wt % obtained from tensile 
testing is shown in Figure 4g. Mechanical properties obtained from 
the stress-strain curve include Young’s modulus, strength, ultimate 
strain, and toughness. 

3. Results and Discussion
3.1 Feature Selection
Utility for the initial experimental data was calculated using 
Equations 1-3 with an a value of 0.5, indicating equal weighting of 
both electrochemical and mechanical utility. The relationship 
between the three features (rGO wt %, ANF wt %, and CNT wt %) and 
utility is shown in in Figure 5a-c. This shows that the regression model 
can be used to establish a direct link between composition and 
performance. The features that were selected all affect the value of 
utility in a noticeable way. However, a single feature alone cannot 
explain the utility values and cannot capture the design space. For 
example, from Figure 5c, which focuses on CNT wt % as the single 
feature, it is evident that multiple samples with 0 wt % CNT have 
different values of utility and that additional information from other 
features would be required in order to accurately predict the 
composites behavior. This can also be seen with ANF wt % as a 
feature, Figure 5b. Feature selection is required to find the best 
combination of features that can model the design space. Lookman 
et al. also found that composition dependent features can be used 
to predict performance and guide experimental exploration of the 
design space.65,68

Feature selection was used to find the most predictive feature 
set. Four combinations of the three features (ANF/rGO, ANF/CNT, 
rGO/CNT, rGO/ANF/CNT) were tested using leave-one-out cross 
validation, as shown in Figure 5d. The unary feature sets were 
disregarded due to their inability to describe complete compositions. 
Unary feature sets would prevent experimental validation of 
predicted compositions. Each feature set performed almost 
identically. The leave-one-out error for the complete feature set 
(rGO/ANF/CNT) was 19.9 % while the errors for the feature sets 

ANF/rGO, ANF/CNT, and rGO/CNT were 19.6 %, 20.1 %, and 19.3 %, 
respectively. The uniformity in errors is expected because all four 
feature sets contain enough information to define the entire system 
in terms of composition due to mass conservation constraints. The 
complete feature set with all three features (rGO wt %, ANF wt %, 
and CNT wt %) was used as it contained the most information and 
performed as well as the other feature sets. Leave-one-out cross-
validation trains the model by using all experimental data except for 

Figure 3. Values of utility for the features (a) GO wt %, (b) ANF wt 
%, and (c) CNT wt % for each experimental data point. (d) Leave-
one-out cross validation error of four different feature sets. Boxes 
are a statistical representation of the distribution of errors for each 
feature set. The top and bottom line are the maximum and 
minimum data points, the top and bottom of the box are the 75th 
and 25th percentile markers, the middle line is the median, and the 
point within the box is the mean.
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one data point to train the model and then validates using the data 
point that was initially left out. This is then repeated until each data 

point is used to validate the feature set. Analysis of variance (ANOVA) 
was used to compare the variance between the 4 feature sets. There 
was no statistical difference between the errors of the different 
feature sets meaning the average of the errors of the four feature 
sets obtained using leave-one-out cross validation are all equal.

3.2 Response Surface
After considering multiple kernels, a combination of two RBF kernels 
with different characteristic length limits were chosen to allow the 
hyperparameter optimization subroutine to identify multiple 
characteristic frequencies of the response surface. In other words, 
using these two RBF kernels allows the response surface and 
acquisition criteria to balance exploration and exploitation. The two 
kernels prevent the model from being trapped in local maxima but 
limits exploration so that potential absolute maxima can be 
identified properly. A predictive model of the utility, calculated using 

this kernel, was obtained using the regression techniques described 
in section 2.2.2 and using initial experimental data. Plots of this utility 
and standard deviation vs. electrode composition are displayed in 
Figure 6 with the design space defined as 0-30 wt % ANF, 0-30 wt % 
CNT, and 70-100 wt % graphene. The model indicates that the utility 
is highest for high rGO loading (>95 wt %). However, the model also 
shows the potential for promising compositions near 80 wt % rGO, 5 
wt % ANF, and 15 wt % CNT. This is most likely because high rGO 
loading will lead to high capacitance values as it is the main 
contributor in the composite due to its high surface area and 
electrical conductivity. CNTs can also contribute to the capacitance 
of the electrode while also potentially imparting improved 
mechanical properties due to strong π-π interactions between the 
CNTs, rGO, ANFs. Finally, adding in small amounts of ANF will slightly 
reduce the specific capacitance of the electrode as it is an electrically 
insulating material and will not contribute to the capacitance. 
However, ANFs will greatly improve mechanical properties by 
strongly associating with the rGO sheets through hydrogen bonding 
and π-π stacking.

The three acquisition criteria, expected improvement (EI), 
probability of improvement (PI), and upper confidence bound (UCB) 
(white star, blue square, and green triangle, respectively in Figure 6b-
c) all point to different locations on the utility surface. UCB (green 
triangle) indicates the point that has the maximum utility value 
possible when examining both mean and variance, PI (blue square) 
describes the highest probability of improvement, and EI (white star) 
takes both the probability and magnitude of improvement into 
consideration. In this work, EI is selected as the acquisition criteria 
instead of PI due to its lack of sensitivity to the target offset value. 
The selection points for PI and UCB are plotted in Figure 6b-c along 
with EI selection points for comparison. Both UCB and EI recommend 
testing in areas that have high variance, or areas that have not been 
experimentally probed. This is because the model requires more 
information across the design space (exploration) before it can begin 
to search for a maxima (exploitation). PI indicates a composition near 
the highest experimental utility composition because it possesses a 
high chance of very minor improvement. The EI predicted optimal 
composition for the first iteration was 74 wt % rGO, 14.5 wt % ANF, 
and 11.5 wt % CNT wt %. As shown in Figure 3, the predicted 
composition is synthesized experimentally and mechanical and 
electrochemical properties are characterized according to the 
methods described in sections 2.3 and S1. The properties of the new 
composition are then used to update the mean and variance of the 
utility predictions. This process constitutes one iteration and is 
repeated to find the composition with the highest utility.

The first iteration was found to have the highest utility of the 
predicted compositions at  0.875 for 74 wt % rGO, 15.5 wt % 𝑼 =
ANF, and 11.5 wt % CNT, Figure 7b. Not only was this the highest 
predicted utility, it was also higher than the utilities obtained from 
the initial experimental data. The model was able to find a 
composition that had a 5.5 % improvement in utility over the best 
performing composite (92.625 wt % rGO, 4.875 wt % ANF, and 2.5 wt 
% CNT) from the initial experimental data. The new composition also 
had Young’s modulus of 18.9 GPa and a strength of 66.3 MPa, which 
corresponds to an increase of 78.8% and 34.0%, respectively, relative 
to the highest performing initial experimental composition.  
However, the capacitance at 1 mV s-1 was 117.2 F g-1, representing a 
29.6% decrease. This is because the model equally weighs 
mechanical and electrochemical performance while the initial 
experimental data prioritized electrochemical performance over 
mechanical performance due to being focused around high rGO 
loadings. 

Figure 4. Three-dimensional plot of (a) utility, and (b) contour plots 
of utility and (c) standard deviation vs. composition. Circular points 
represent initial experimental data while the star, square, and 
triangle represent recommendations from the model based on either 
expected improvement (EI), probability of improvement (PI), or 
upper confidence bound (UCB), respectively.
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The model next explored relatively high ANF content 
compositions (such as 70 wt % rGO, 22 wt % ANF, and 8 wt % CNT) 
only to find the utility in those areas to be fairly low. This is due to 
low surface area of electrically conductive material in the composite 
resulting from the low rGO content. This caused low capacitance 
values and poor cycle stability leading to a reduced ECU. The model 
then recommended relatively high CNT content compositions (such 
as 70 wt % rGO, 0 wt % ANF, and 30 wt % CNT). While the high CNT 
content electrodes performed well electrochemically (due to the 
CNTs contribution to the capacitance), the mechanical properties 
were found to be low due to the lack of a mechanical nanofiller. This 
led to reduced interactions between the electrode components and 
a reduced mechanical utility. 

After 6 iterations, the utility surface predicted by the model, 
Figure 7a, changed drastically as compared to the predicted utility 
using only initial experimental data, Figure 6a. These results are 
significant because we were able to find the highest utility 
composition (74 wt % rGO, 15.5 wt % ANF, and 11.5 wt % CNT) in an 
area of the design space that would not have been explored as 
rapidly when using only experimental approaches. The use of 
materials informatics reduced the number of experiments that 
would have been required to find this optimal composition when 
compared to systematically exploring the design space. Furthermore, 
the model gives additional insight into the tradeoffs between 
electrochemical and mechanical performance when considering 
composite materials by predicting maxima and minima in the 
response surface at certain compositions. 

Conclusions
In summary, functional analysis was used to identify the variables 
that control the electrochemical and mechanical properties of the 
composite electrode. This process provided valuable information 
regarding what properties (electrode composition, capacitance, 
Young’s modulus, strength, ultimate strain, and toughness) would be 
of interest in this work. This method has great potential in other 
areas of materials science by identifying key aspects of a materials 
problem that control desired performances or outcomes. Using this 
approach can also aid in the discovery and understanding of 
functional relationships in a material problem which can lead to 

more accurate solutions that directly target the appropriate inputs. 
With these properties, a utility function was developed for evaluating 
the performance of the multifunctional material. The utility 
incorporated material properties such as specific capacitance, 
strength, Young's modulus, ultimate strain, and toughness. These 
properties were combined in a weighted fashion to allow for 
adaptation to user preferences of the electrode's electrochemical or 
mechanical properties. Next, feature selection, using leave-one-out 
cross validation, was performed to find the subset of features that 
captured the response surface most accurately. From this feature set 
analysis, a Gaussian process regression model that used rGO wt %, 
ANF wt %, and CNT wt % as features was selected and fit to the data 
by tuning the hyperparameters. EI was used as the acquisition 
method for predicting the next best composition to test 
experimentally. After 6 iterations, the model identified a maximum 
in the design space in a previously unexplored area. The model was 
able to find a composition with higher overall utility (5.5% increase), 
Young’s modulus (78.8% increase), and strength (34.0% increase) 
than the best initial experimental composition. This approach can be 
used to map out the design space in an optimal manner reducing the 
number of experiments required to find the optimal combination of 
rGO, ANFs, and CNTs for multifunctional structural energy and 
power. 
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