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Abstract

Herein, we present a new computational methodology that unlocks the prediction of the complex 
multi-species multi-equilibria processes involved in the formation of complex metal-oxo 
nanoclusters.  Relying on our recently introduced method named POMSimulator, we extended its 
capabilities and challenged its accuracy with the well-known phosphomolybdate [PMo12O40]3– 

Keggin anion system. We show how the use of statistical techniques enabled the processing of a 
vast number of speciation models and their associated systems of non-linear equations efficiently 
and in a scalable manner. Subsequently, this approach is applied to generate statistically averaged 
speciation diagrams and their associated error bars. Then, we unveil the previously unreported 
speciation phase diagram under varying [Mo]/[P] ratios vs pH. Our findings align well with 
experimental data, indicating the prevalence of the Keggin {PMo12} as the primary species at low 
pH, but the lacunary {PMo11}and Strandberg {P2Mo5} anions also emerge as major species at 
other concentration ratios. Finally, from 7·104 speciation models we inferred a plausible reaction 
network across the diverse nuclearities present within the system, which underlines the role of 
trimers as key intermediate building blocks.

Introduction
Polyoxometalates (POMs) are molecular metal-
oxide polyanions1 that form via self-assembly 
processes.2 Usually, POMs are formed by metal 
atoms of groups V (V, Nb, and Ta) and VI (Mo 
and W), and they can be classified between 
isopolyanions (IPAs) and heteropolyanions 
(HPAs) depending on the absence or presence of 
a heteroatom such as P, As, Si or even Al among 
others. The first-ever described polyoxometalate 
was the phosphomolybdate α-Keggin anion by 
Berzelius.3 It was not until a century after its first 
synthesis that J. F. Keggin established the crystal 
structure by powder X-ray diffraction4 of 
[PMo12O40]3–.

Polyoxometalates form a wide range of well-
defined structures of different sizes and shapes. 
The self-assembly formation processes of these 
structures depend on different factors such as pH, 
temperature, pressure, total metal concentration, 
ionic force, and the presence of reducing agents 
and counter-ions. Despite the complexity of 
controlling the synthesis, POMs are finding 
relevant applications in the fields of catalysis,5–9 
electrochemistry,10 medicine,11–14 and 
information technologies.15–19 Mass 
spectrometry,20 X-ray diffraction,21,22 and NMR23 
are the most important techniques used 
experimentally to determine POMs structures. 
On the other hand, quantum mechanics methods 
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and molecular simulations have provided 
essential insight for understanding POMs 
chemistry, their electronic structure and 
reactivity, and their properties in solution24. Yet, 
none of these techniques have described in detail 
the complex multi-species multi-equilibria 
processes that form polyoxometalates. 

We recently presented a new computational 
method25–28 named POMSimulator that 
automatically generates and solves the multi-
equilibria non-linear system of equations (NLE) 
for a given set of molecular oxo-clusters. 
POMSimulator computes the concentrations of 
all species at equilibrium, so it allows plotting 
speciation diagrams (conc. vs pH) and speciation 
phase diagrams (total metal conc. vs pH) from 
first principles calculations. This methodology 
was successfully employed to describe the 
speciation of Mo and W,25,26 and of V, Nb, and 
Ta27 isopolyanions (IPAs). In all these cases, our 
method resulted in an excellent agreement with 
experimental data. POMSimulator steadily 
evolved since its creation aimed at dealing with 
increasingly complex chemical systems. Several 
algorithmic improvements in the deduction of the 
nucleation mechanisms, generation of formation 
constants, and parallelization of code led to a 20x 
speed-up in the NLE resolution step. Recently, 
we have released a public open-source version of 
the code29,30. 

However, the main issue that limits the general 
application of our method is that, in such kinds of 
systems, there are indeed many more reactions 
than chemical compounds, and thus the resulting 
system of NLE is overdetermined. To tackle this 
problem, we introduce the concept of speciation 
model (SM): a unique subset of chemical 
reactions and a mass balance equation matching 
the number of compounds to produce a 
determined NLE system, as schematically shown 
in Figure 1. Consequently, a SM describes the 
composition of the system at equilibrium. To 
define SMs, we assume that all protonation 
reactions in the set must be included (due to the 

importance of the acid-base behaviour of POMs), 
with only nucleation reactions varying across 
models. In this way, we can strongly reduce the 
total number of produced SMs: for the example 

in Figure 1, we go from a total of 11
6 = 462 

models, to only 6 (combining the 4 acid – base 
reactions and the mass balance with one 
nucleation reaction at a time). Then, all possible 
SMs were sorted according to their root mean 
squared error to the experimental data available, 
and finally, the single best speciation model was 
selected. This SM was then used to represent the 
system, employing its regression parameters to 
scale all computed equilibrium constants. 

Although that procedure worked well for the 
simplest metal-oxo IPA clusters, the inherent 
dependence on experimental formation constants 
supposes an important drawback in the predictive 
power of the method.  In most cases, neither full 
speciation diagrams nor datasets of formation 
constants are available. Instead, there is only 
qualitative data about the species which are 
formed, or the pH at which these appear31,32. 
Moreover, the problem becomes untreatable as 
complexity increases, since the number of 
speciation models grows factorially with the 
number of species and reactions. 

Figure 1. Schematic example of the equations arising from a 
simple reaction network for one monomer M1 giving a dimer M2, 
and their protonated forms, so a total of 6 species, 4 acid/base 
reactions in grey, 6 nucleation reactions in purple, plus the mass 
balance equation in orange.

Aimed at broadening the applicability of the 
method and reducing its close dependence on 
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experimental data we herein present new 
developments that establish a basis for exploring 
huge chemical speciation spaces, guided by 
stochastic sampling and statistical analysis. First, 
we introduce the concept of SM ensembles with 
comparable behaviour and how to select 
representative models. This new approach allows 
simulating average speciation diagrams and their 
associated error bars without relying on 
experimental data, Then, we show how the new 
methodology can handle the overwhelming 
complexity arising from the presence of 
heteroatoms in the POM structure. Pursuing a 
better understanding of the mechanisms involved 
in the formation of the Keggin anion, we chose 
this well-known phosphomolybdate system to 
challenge our method. For the first time, 
computed speciation diagrams have enabled the 
identification of certain species detected in 
experiments but not yet fully characterized. 
Considering the presence of species containing 
both phosphorus and molybdenum, we offer two 
perspectives of the phase speciation diagram: one 
emphasizing the phosphorus percentages within 
the species and the other focusing on the 
molybdenum percentages. Moreover, the 
analysis of the reaction networks embedded into 
tens of thousands of speciation models permitted 
the identification of the most relevant reaction 
mechanisms in play.

Theoretical Background and New 
Developments 
Originally, the POMSimulator was developed to 
generate and solve the speciation equations of the 
simplest POMs having only one metal atom type, 
plus oxygen and hydrogen atoms.  In more 
complex systems, the presence of additional atom 
types demands important adjustments in the 
systems of equations. For instance, a new mass 
balance equation must be included to account for 
any additional atom type. Moreover, the initial 
target system (Keggin phospho-molybdate) also 
implies a massive increase in the total number of 
speciation models. For a system of 49 species and 
109 chemical reactions, the total number of SM 

would be 2.85·1031, thus showcasing the need for 
an alternative approach. Considering the 
paradigm stated in Figure 1, the number of SMs  
is reduced to 3·108 , which is still more than two 
orders of magnitude larger than the 1·106 SMs 
that were solved for vanadium IPAs27. Therefore, 
we hypothesized that to properly treat 
heteropolyanions and even more complicated 
systems in an attainable computation timescale, 
the sheer complexity had to be reduced by 
selecting a subset of speciation models. Thus, we 
decided to sample the SM population, eventually 
calculating 1% of this number only. This still 
involved approximately 3·106 SMs, which is the 
largest system calculated by POMSimulator so 
far. As we are not solving the totality of the SMs, 
we need to ensure that the calculated sample is 
homogeneous, capturing the variability of the 
population. To this end, it is important to note that 
adjacent SMs as generated internally in 
POMSimulator include very similar reactions. 
For this reason, random sampling must be used to 
avoid biasing the results with consecutive 
models. In this way, we can use the sample to 
compute speciation diagrams, predict new 
formation constants unreported before, and give 
light to the complex speciation of POMs.

The notion of SM ensembles has been introduced 
to consider the variability of the NLE systems 
that are under treatment: as the nucleation 
reactions selected among different SMs vary, the 
speciation predicted by every model can be 
dramatically distinct. It is noteworthy that small 
numerical changes in the equilibrium constants 
can lead to completely different speciation 
scenarios. Since assessing descriptors to 
categorize and compare SMs is not trivial, herein 
we decided on an approach based on identifying 
the most relevant features of the speciation 
diagram computed for every SM. The advantage 
of such an approach is that the speciation can be 
immediately referenced to experimental 
information, even when only qualitative data is 
available. 
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Because of the high variance in the speciation 
results, a naïve average of a complete collection 
of speciation diagrams would be unlikely to 
reflect well the actual behaviour of the system. In 
contrast, we pursue to apply a clustering 
approach over the collection of models to 
encounter the groups with the most distinct 
speciation behaviours. Then, we average only 
inside these groups, unravelling the key 
typologies that can be extracted from the 
data.  Moreover, we also have access to the 
standard deviation of each group, which we can 
use to estimate the uncertainty associated with 
each of our speciation predictions.

Figure 2. Schematic depiction of the proposed SMs treatment 
workflow.

As shown in Figure 2, the first step of the 
workflow is the featurization of the speciation 
diagrams, thus reducing the dimensionality. The 
collection of all the speciation diagrams is stored 
as a 3D array of size Nspecies⋅NpH⋅Nmodels. In 
general, the number of pH points (NpH) shall be 
relatively large, as the resolution of the NLE 
systems encoded in each model does not behave 

well for sparse pH grids. The goal of the 
featurization is to reduce the dimensionality 
along the pH axis, characterizing the speciation 
diagrams through a set of parameters related to 
the shape and location of each peak for each 
species: maximum height, width, area, and 
position of the maximum. After testing several 
feature subsets (see Figures  S8-S11 in the 
Supplementary Information), we encountered 
that considering the height, width, and position of 
the peaks was enough to reproduce the behaviour 
of the whole diagram across the pipeline, 
reducing the input to a 2D matrix of shape 
(3·Nspecies⋅Nmodels). 

For the clustering stage, we selected an 
unsupervised K-Means algorithm to group the 
SMs, applying also Principal Component 
Analysis (PCA) to visualize the spread of the 
detected clusters. While alternative approaches 
could be proposed (e.g. t-SNE, DBSCAN, 
autoencoders…), K-Means was the most size-
scalable method, which was essential to tackle 
large systems having more than 1·106 SMs. From 
these clusters, a chemistry-driven selection is 
performed, discarding the groups having 
predictions that are off from experimental results 
or chemical knowledge. The criterion for 
discarding a group could be, for example, related 
to the presence of large molar fractions for 
species that are not reported, or just by the 
appearance of peaks away from the expected pH. 
For instance, if we compare the second group 
with the experimental reference from Figure 3, 
we find that the central peak is overestimated, and 
the shapes of the extreme peaks are not well-
reproduced. Therefore, in this situation, we will 
select the first group to describe the speciation of 
the system. Although the number of desired 
clusters in K-Means must be specified 
beforehand, the proposed selection scheme which 
regroups all the clusters that have not been 
discarded makes the tuning of this parameter less 
critical.
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Further refinement inside a given group of 
models can be achieved either through applying 
the clustering protocol a second time, if the 
number of models it contains is large enough, or 
else by filtering out its most extreme observations 
(outlier filtering). To achieve this (bottom part of 
Figure 2), we select a given species in the 
diagram to be adjusted and then build the 
corresponding box and whisker plots for its molar 
fraction values at every pH point or a selected 
subrange of pH points. From there, the points that 
are further than 1.5 times the interquartile range 
of the sample (beyond the limits of the whiskers) 
can be discarded, consequently refining the 
description of the target species in the speciation. 
Then, the average speciation diagram is 
computed for each of these clusters, including 
error bands from the standard deviation 
(considering a   interval from the average 
value).

Figure 3. Simplified example of a three-species speciation 
diagram, showing an average diagram for the whole set of SMs 
(top left), the experimental reference (top right), and two clusters 
obtained through K-means clustering and filtering (bottom).  

In the original POMSimulator workflow, we 
generated speciation diagrams, phase speciation 
diagrams, and reaction mechanisms for the best 
SM, selected from the RMSE values obtained 

through linear regression against experimental 
data. In contrast, the novel approach uses a 
selected group of SMs rather than one single best 
model. In this way, we are now considering the 
diversity of different groups of SMs and the 
similarities among the models of a given group or 
groups.  

Another important point to discuss is that the raw 
DFT computed formation constants are 
overestimated, 25–27 so they need to be scaled, 
mainly due to limitations associated with the 
modelling of acid-base reactions and the 
corresponding solvation effects. As we did 
previously, and since experimental formation 
constants for this system were available,31,33,34 
they can be employed to scale the overestimated 
DFT formation constants computed by our 
methodology. However, herein we rely on a 
randomly chosen SMs set, so looking for the best 
SM would not make sense. Instead, we propose 
to use the average slope and intercept values from 
the whole SMs approximately 3·106, avoiding the 
choice of a unique representative model. In this 
way, the treatment becomes more general and 
applicable to cases where random sampling is 
applied, leveraging the large set of models that 
the POMSimulator generates. This resonates well 
with previous findings hinting at a possible 
universal scaling for formation constants28. As 
detailed in the Supplementary Information 
(Figure S1), the employed regression equation for 
all reported results was log 𝐾𝑒𝑥𝑝 = 0.28log 𝐾𝐷𝐹𝑇
―2.02. This equation showcases the 
overestimation of the theoretical formation 
constants, which have to be scaled by a factor of 
0.28, and then subtracted 2.02 logarithmic units.

To validate this approach, we selected three of the 
systems that we had already successfully 
explored: W, Nb, and V IPAs. As shown in Table 
1, these selected systems enable us to check the 
adequacy of our clustering approach for widely 
different numbers of SMs, to test how well the 
process scales, and for increasingly complex 
speciation diagrams.  Details on the protocol 
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followed for each of these systems, as well as the 
comparison between the predicted speciation 
diagrams and experimental results, are available 
in the Figures S2-S7 in the Supplementary 
Information. Nonetheless, as a general note, all 
three examples resulted in reasonable agreements 
between the clustering-based and the best-model-
based methods, confirming the consistency of 
these two modes of operation. As we have proven 
from the W, Nb, and V systems, using sub-
samples is enough to simulate the complex 
speciation of POMs. At this point, we were 
confident that the results obtained from the 
chosen sample (1%) were representative from a 
statistical point of view. 

Table 1. Details for the systems considered in this study. 

Metal Nspecies Nreactions Number 
of SMs 

Number 
Selected 
SMs

Acid/base 
behaviour 

W 51 67 50k 1051 Acidic 
Nb 39 66 500k 6642 Alkaline 
V 42 75 1M 12971 Amphoteric 
PMo 49 109 300M 25761 Acidic 

Novel Application: The Self-Assembly 
of Phosphomolybdates
In 1986, Pettersson et al. 34 reported speciation 
data for the phosphomolybdate system at 
[Mo]/[P] ratios 9 and 12, targeting the Wells-
Dawson [P2Mo18O62]6– and the Keggin anion, 
respectively. More recently, in 2022, Cadot and 
co-workers33 revisited the speciation diagram for 

the Keggin phosphomolybdate system and 
identified the Keggin anion {PMo12}, the 
Strandberg anion {P2Mo5}, {PMo11} lacunary 
species. Yet, as well as Pettersson, they detected 
two {PMo9} species A-{PMo9} and B-{PMo9}, 
which appeared at distinct pH intervals and that 
has not been yet fully characterized. In Figure 4a, 
A-{PMo9}is the orange peak at pH=1.5 and B-
{PMo9} the yellowish peak around pH=5.

Our workflow starts indeed by defining a set of 
building blocks that, in the present case, 
comprises 49 chemical species ranging from 
phosphate [PO4]3– and molybdate [MoO4]2– 

monomers, to dimers, trimers, etc … until the 
{PMo12} species itself, at several protonation 
states (see Computational Details). For the 
Keggin anion, three species [PMo12O40]3-, 
[HPMo12O40]2– and [H2PMo12O40]– were 
included while larger species such as the Wells-
Dawson {P2Mo18} were excluded to reduce 
complexity and enable comparison with recent 
experimental data33. From there, we solved the 
NLE systems of the 3·106 randomly sampled 
SMs (1% of 3·108) for an array of pH values, and 
constructed the corresponding speciation 
diagram of every SM. After applying the 
statistical treatment described above, we ended 
up with a total of 2.5·104 SMs that were in 
reasonable agreement with experimental 
evidences31–34. Finally, we simulated an average 
speciation diagram (Figure 4b), representing the 
amount of each species at equilibrium expressed 
as their phosphate fraction, with their 
corresponding error bars (shaded areas), versus 
pH. 
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Figure 4. a) Experimental speciation diagram for phosphomolybdate system (adapted from Cadot et al.33); b) Simulated speciation diagram 
from 25761 selected SMs. Lines represent the average value of concentration, and the shading represents the deviation from that value; c) 
Simulated speciation diagram grouped by nuclearities. For a same nuclearity all protonation states were added into a single line.

At first glance, comparing the experimental 
speciation diagram (Figure 4a) with the simulated 
one (Figure 4b) is not entirely satisfactory, as the 
protonation state of the various species suggested 
by the experiments does not always align 
precisely with the species predicted by the 
simulation. Note that for some species, the 
shadow areas in Figure 4b, indicating the 
standard deviation of each curve, is very narrow 
thus the curve predicted is quite accurate. We can 
present the same results with much better 
agreement with the experimental results if we 
group species of the same nuclearity in the 
speciation diagram, as shown in Figure 4c.  As 
expected, the assembly of phosphomolybdates 
happens only at acidic pH: in alkaline conditions 
(pH>7), only the acid-base processes of 
monomers are observed, in our case phosphate in 
Figure 4. We predict the same main species as in 
the experiments: the Keggin anion {PMo12}, non-
protonated or mono-protonated, appears as the 
major species at pH < 2. The lacunary {PMo11} 
is major species in the experimental diagram in 
the range 2<pH<4, and it also appears in Figure 
4c although with lower intensity. Remarkably, 

the Strandberg anion {P2Mo5} also emerges in 
the simulated diagram but slightly displaced 
towards more acidic conditions. Additionally, we 
also found the two {PMo9} lacunary structures 
reported by Pettersson and by Cadot, although at 
lower concentrations.  B-{PMo9} is the pink-
yellowish peak centred at pH=4 so it corresponds 
to [PMo9O34]9- species. Then, B-{PMo9} is 
[PMo9O31]3-, which appears at very low pH and 
as a minor species. 

In general, we can see how as pH increases there 
is an important degree of disassembly, going 
from the most metal-rich species {PMo12} to 
smaller clusters. This evidence is explained 
because the self-assembly of phosphomolybdates 
is promoted by the presence of protons. We were 
also able to identify {PMo5}, the precursor of 
{P2Mo5}, which was previously unreported. The 
robustness of this approach is indeed confirmed 
by the presence of the key {P2Mo5} cluster, which 
was absent when applying the previous 
methodology that only considered the lowest-
RMSE best model in the dataset (Figure S11 in 
the Supplementary Information). Even though 
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the maximum concentrations do not fully match 
the experimental values, we predict the same 
dominant species in the same relative positions. 
This mismatch is a consequence of considering 
an average value across multiple speciation 
models, as explained above. Therefore, if we 
consider the standard deviation for each species, 
we obtain an error band that is closer to the 
expected values. Moreover, the Keggin anion is 
in any case predominant in the 0 < pH < 2 range, 
as expected. It is worth to note that all the 
speciation diagrams presented in Figure 4 
correspond to experimental conditions 
([Mo]/[P]=12) that favour the formation of the 
Keggin anion.
Given the success of the simulation of the PMo 
speciation diagram, the next step was the 
computation of the corresponding phase 
speciation diagram (see Figure 5). Note that for 
generating phase speciation diagrams for IPAs, it 
was necessary to calculate the speciation for the 
single best SM for all pH points at different 
values of total metal concentration. When 
applying the same methodology to HPAs, 
however, there is a fundamental change. As 
HPAs contain both metal and heteroatom, the 
speciation is strongly dependent on the ratio 
between them. For this reason, the key parameter 
for the Y-axis of the phase speciation diagram 
was the [Mo]/[P] ratio, instead of the total metal 
concentration in the system. Also, under the 
current paradigm, the treatment of speciation 
ensembles required us to consider more than one 
SM to build the phase diagram. 

We selected from the statistical treatment the 
SMs which were known to provide a good 
prediction of the speciation at a metal/heteroatom 
ratio of 12 (Figure 4). From there, we took the 
same group of SMs to compute the average phase 
speciation diagram through a grid of 20 points for 
the [Mo]/[P] ratio (ranging from 2 to 12), and 280 
points for the pH. As both metal and heteroatom 
percentages can be considered, we plotted two 
complementary phase speciation diagrams, 
employing the phosphate fraction (Figure 5 

above) and the molybdate fraction (Figure 5 
below). In this way, it is possible to analyse the 
preferred phases for phosphorus and 
molybdenum at any pH-ratio point and 
separately.

Figure 5. Speciation phase diagram for the PMo system. The 
horizontal axis represents pH and the Y axis represents the 
[Mo]/[P] ratio. The top diagram shows as phosphorus percentage 
and the bottom one as the molybdenum percentage. The diagrams 
correspond to two different views of the same speciation phase 
diagram.

Up to pH = 2 and at a large [Mo]/[P] ratio (>7), 
the Keggin anion is the major phase for both P 
and Mo-containing species. However, if the 
relative amount of Mo decreases, free phosphoric 
acid becomes the dominant form of phosphorus. 
As pH increases, the Keggin-lacunary anion 
{PMo11} becomes dominant, appearing at large 
ratios for Mo and P. However, {PMo11} is 
competing with the Strandberg anion {P2Mo5}, 
which becomes the main phase, both at lower 
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[Mo]/[P] ratios and at 2 < pH < 3. As 
aforementioned, this species was not predicted by 
the single best SM with the lowest RMSE. 
Therefore, its central role in the predicted phase 
diagrams is another confirmation of the adequacy 
of our approach. Above pH > 3.5, all dominant 
phosphorus species are phosphates in decreasing 
states of protonation. Molybdenum, in contrast, is 
present as the Mo2O7 dimer as another main 
species until pH = 5, where the molybdate 
[MoO4]2– becomes the only major species.

Originally, the reaction mechanism for the self-
assembly of IPAs was acquired from the selection 
of a single best SM, which consists of a single set 
of reactions. Following the previous discussion, 
we took the same selected SMs group as in the 
speciation and phase diagrams to analyse the 
chemical reactions. For each nuclearity in the 
molecular set, we looked for all the reactions that 
formed it and calculated the frequency of each 
reaction appearing in the selected SMs group. 
From there we chose the reactions with the 
highest frequency to represent the formation of 
each nuclearity, as depicted in Figure 6. 
Interestingly, the reactions for {Mo2} 1, {PMo9} 
11, and {P2Mo5}15 presented particularly high 
frequencies, hinting at their importance in the 
mechanism. In general terms, the preferred 
reaction was not the thermodynamically most 
favourable. Condensation reactions that allow 
growing larger clusters are driven forward by the 
complexity of the reaction network and the 
coupling of nucleation and acid-base equilibria, 
as already discussed in a previous work27. This 
highlights the need for our approach, which 
includes acid-base equilibrium and condensation 
and addition reactions, to describe the reaction 
mechanism for the formation of such 
nanoclusters. A standard linear description of 

potential energy curves with only the most stable 
species would not adequately depict the pathway 
f cluster formation.

Regarding the formation of the Keggin anion 14, 
common chemical intuition assumed that trimers 
should play a key role35,36. Simple visual analysis 
of Figure 6 reveals that the trimeric species 3, 4 
and 5 are highly interconnected. Particularly, the 
{Mo3} 3 that governs most of the cascade of 
reactions leading to Keggin through three 
consecutive additions: with phosphate 7 to lead 
{PMo3} 8, then with 8 towards {PMo6} 10, and 
with 10 to give {PMo9} 11. Finally, the resulting 
{PMo9} 11 reacts with the linear trimeric species 
{Mo3O10} 4 and forms the Keggin anion. 
Alternatively, the formation of the Keggin-
lacunary 13 is achieved by the reaction of the 
{PMo9} 11 with a dimeric species 2. Finally, the 
other main compound {P2Mo5} 15 is formed after 
one {PMo3} 8 reacts with a dimeric species 1 to 
give the {PMo5} 9 , which can react with another 
phosphate 7 to reach the Strandberg anion. 

Noteworthily, the reaction network also shows 
the distinct nature and role of the two {PMo9} 
species.  A-{PMo9} 11 is a highly connected 
node, with degree equal to 4, and is the 
intermediary step in the pathway towards 
lacunary 13 and Keggin 14. However, the other 
B-{PMo9} species, designated as 12 in the 
reaction network, exhibits degree two akin to 
species 13, 14, and 15. This indicates that all 
these species serve as endpoints in the network, 
representing potential reaction products 
achievable under favourable conditions.
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Figure 6 Depiction of the most probable reaction network for the formation of the Keggin phosphomolybdate in an aqueous solution. 
Circles correspond to nuclearities and lines to the specific reactions connecting these nuclearities. Numerical values in parenthesis are 

Gibbs reaction free energies in kcal·mol-1.
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The topological properties of the reaction 
network arising from our massive numerical 
analysis places a reactant at the same level as 
products. Actually,  phosphate anion 7 is the 
only other node with degree 2 in the network 
because it relates to very few species, contrarily 
to the other reactants molybdate 0 or other Mo 
species having a larger degree. The network 
shows that the heteroatom P is indeed 
incorporated into the forming POM skeleton 
through an addition reaction with trimer 3, this 
step being computed as the most exergonic 
reaction in the network. Some other steps also 
show large negative G values, particularly 
those reactions involving positive and 
negatively charged ions, as expected. However, 
other addition reactions between two negatively 
charged ions showed to be largely exergonic, 
what shows the importance of accounting for 
entropy effects. Figure 6 depiction of the 
reaction network thus summarizes the most 
occurring connections between the different 
species independently of its protonation state, 
which depends on pH.   

Computational Details
The molecular set was subjected to geometry 
optimizations with DFT, using ADF2019.137 
package from SCM. PBE38,39 was used as 
functional and TZP as basis set. All calculations 
included relativistic effects using ZORA40,41. 
Solvent effects were considered, and 
continuous solvent model COSMO was 
employed with water as solvent and using the 
Klamt radii42. Analytical frequency 
calculations were also performed to 
characterize stationary points. Ground state 
Gibbs free energies were computed at 1 atm and 
298.15K. The molecular set is available in the  
ioChem-BD repository43 and can be accessed at 
https://doi.org/10.19061/iochem-bd-1-323.

Conclusions
Speciation of molecular metal oxides 
challenges both experimental and 
computational methods because of the high 
complexity of the chemical reaction networks 
governing the self-assembly processes. Our 
recently introduced method, named 

POMSimulator, has accurately computed the 
pH-dependent equilibria for Mo, W, V, Nb, and 
Ta isopolyoxoanions, based on experimental 
data aided selection of the best speciation 
model. In this report, we transcend this 
dependence by carrying out a stochastic and 
statistical treatment of the whole space of 
speciation models, and their associated non-
linear equations systems. 

By sampling randomly a vast number of 
speciation models, our workflow could process 
the data of more than 3·106 speciation 
diagrams: featurization and dimension 
reduction, K-means clustering, chemical-basis 
selection, and outliers filtering. This resulted in 
2·104 finally selected speciation models, which 
were used to generate what we called a 
statistically average speciation diagram, 
accompanied by error bars. The final average 
diagram is in full agreement with experiment 
and allowed identifying two {Mo9} species 
previously reported in literature.

Furthermore, our work has uncovered the 
speciation phase diagram, i.e., total 
concentration vs pH for an 
heteropolyoxometalate system. Indeed, for the 
first time, we introduced a speciation phase 
diagram in the form of [Metal]/[Heteroatom] 
ratio vs pH.  Moreover, we provide two views 
of the diagram, either focussed on the P-based 
or on the Mo-based species. 

Moreover, our findings corroborate well with 
experimental data, revealing the dominance of 
the Keggin {PMo12} species at low pH levels. 
Interestingly, our analysis also highlights the 
significant presence of lacunary {PMo11} and 
Strandberg {P2Mo5} anions under varying 
concentration ratios, shedding light on the 
diverse molecular compositions that arise 
within the system. Additionally, our 
comprehensive examination of many speciation 
models has led to the inference of a plausible 
reaction mechanism, emphasizing the pivotal 
role of trimers as key intermediate building 
blocks in the speciation process.

Page 11 of 16 Chemical Science

C
he

m
ic

al
S

ci
en

ce
A

cc
ep

te
d

M
an

us
cr

ip
t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

7 
L

en
gu

a 
20

24
. D

ow
nl

oa
de

d 
on

 2
9/

7/
20

24
 1

2:
17

:5
6.

 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
DOI: 10.1039/D4SC03282A

https://doi.org/10.19061/iochem-bd-1-323
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4sc03282a


The current understanding of the self-assembly 
processes that lead to the formation of large 
molecular metal-oxo clusters is based on an 
empirical trial-and-error basis. The novel 
understanding that this new simulation 
methodology can provide is of particular 
importance for improving the rational synthesis 
of polyoxometalates. To conclude, this work 
demonstrates a way to deal with the intricate 
reaction network governing the reactivity of 
phosphomolybdates and derives new and 
valuable insights into the distribution of species 
under different chemical conditions, thereby 
enriching our knowledge of complex systems 
speciation.
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The molecular set employed to run the simulations is available in the ioChem-BD 
repository and can be accessed through the following link: 
https://doi.org/10.19061/iochem-bd-1-323

A first release of the POMSimulator code is available on GitHub 
(github.com/petrusen/pomsimulator), and also on Zenodo repository 
(https://zenodo.org/records/10689769). The version used in this publication is available 
upon request.
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