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Artificial afferent neurons in the sensory nervous system inspired by

biology have enormous potential for efficiently perceiving and

processing environmental information. However, the previously

reported artificial afferent neurons suffer from two prominent

challenges: considerable power consumption and limited scalability

efficiency. Herein, addressing these challenges, a bioinspired artifi-

cial thermal afferent neuron based on a N-doped SiTe ovonic

threshold switching (OTS) device is presented for the first time.

The engineered OTS device shows remarkable uniformity and

robust endurance, ensuring the reliability and efficacy of the arti-

ficial afferent neurons. A substantially decreased leakage current of

the SiTe OTS device by nitrogen doping results in ultra-low power

consumption less than 0.3 nJ per spike for artificial afferent neurons.

The inherent temperature response exhibited by N-doped SiTe OTS

materials allows us to construct a highly compact artificial thermal

afferent neuron over a wide temperature range. An edge detection

task is performed to further verify its thermal perceptual computing

function. Our work provides an insight into OTS-based artificial

afferent neurons for electronic skin and sensory neurorobotics.

1. Introduction

With the emergence of artificial intelligence and internet of
things (AIoT), an immense volume of data from ubiquitous
edge devices necessitates real-time processing with high energy
efficiency.1,2 To overcome the von Neumann bottleneck pre-
valent in the traditional computational paradigm, neuro-
morphic computing architecture at the edge has emerged as
a compelling contender for its advantageous energy and area

efficiency.3,4 Drawing inspiration from the human capacity for
perceiving and processing environmental information with
remarkable parallelism and minimal power consumption,5–7

the artificial afferent neurons in the sensory nervous system
play a pivotal role in neuromorphic computing hardware,
implementing the function of converting analog signals into
electrical neural spikes.8,9 Moreover, these synthetically percep-
tive artificial afferent neurons can be applied to abundant
scenarios at the edge, such as intelligent sensors, image
recognizers and nociceptors, which provides potential for bio-
electronic interfaces and the input of the spiking neural net-
work (SNN).10–16 However, the conventional CMOS-based arti-
ficial afferent neurons require intricate peripheral circuits
including analog-to-digital converters (ADCs) and voltage-to-
spike converters (VSCs),17,18 resulting in inefficiencies in energy
and overall area utilization.19

Recently, emerging devices exhibiting metal–insulator tran-
sition (MIT) behavior represented by VOx and NbOx have been
favorable for constructing artificial afferent neurons in exten-
sive research studies.20–23 These novel artificial neurons with a
simple circuit structure show better scalability compared with
CMOS-based ones. Nevertheless, they usually suffer from con-
siderable power consumption due to the high leakage current.24
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New concepts
Recent literature on afferent neurons focuses mostly on metal–insulator
transition (MIT) materials, which suffer from two prominent challenges:
considerable power consumption and limited scalability efficiency. From
the perspective of core material design, this research demonstrates a
temperature-sensing artificial afferent neuron based on an ovonic
threshold switching (OTS) material that features low power consumption
and a compact circuit structure. These advantages are due to the decreased
leakage current by nitrogen doping and the inherent temperature response
of OTS. An edge detection task is performed to further verify the thermal
perceptual computing function of artificial afferent neurons. The finding
of this study provides a new material approach for the study of electronic
skin and sensory neurorobotics.
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On the other hand, various sensors have to be introduced into
the neuron circuit as MIT devices are insensitive to external
signals, such as light or heat. Additional sensors result in the
physical separation of sensing and computing functions for
artificial afferent neurons, which will increase the area overhead
inevitably. To tackle these problems, here, a novel device with
low leakage current and direct response to external signals is
urgently required to replace the MIT devices and sensors in the
above afferent neuron circuits to achieve both low power con-
sumption and high scalability for the integration of sensing and
computing. As a chalcogenide threshold device, OTS is more
suitable for building afferent neurons owing to its typical
semiconductor characteristics.25,26 Te-based OTS devices exhibit
good comprehensive performance and simple composition in
the family of OTS materials,27 yet binary Te-based OTS devices
have a relatively large leakage current.28,29

In this work, we propose an N-doped SiTe OTS device used as
a temperature-sensing artificial afferent neuron with low power
consumption. Nitrogen doping enables the SiTe OTS device to
have an extremely low leakage current of 5.5 nA; hence, ultra-low
power consumption less than 0.3 nJ per spike for this artificial

afferent neuron is acquired. At the same time, the superior cycle-
to-cycle uniformity of the N-doped SiTe device ensures a stable
spike frequency for afferent neurons. Furthermore, taking
advantage of the inherent temperature response of our OTS
device, a highly compact artificial thermal afferent neuron was
put forward, which is capable of sensing temperatures ranging
from 25 1C to 100 1C without extra sensors and then converting
them into spike signals with different frequencies. Finally, we
simulate a sensory array based on a frequency-encoded artificial
thermal afferent neuron to accomplish an edge detection task.
The experimental results prove that our OTS-based artificial
afferent neuron shows great potential for use in highly efficient
and compact neuromorphic perception systems.

2. Results and discussion
2.1. Electrical characteristics of OTS devices

We fabricated N-doped SiTe OTS devices with a via-hole structure,
as well as SiTe OTS control samples with the same feature size.
Fig. 1a shows an SEM image of the via-hole array and an enlarged

Fig. 1 Structure and electrical characteristics of the OTS devices. (a) SEM image of the via-hole array (left) and an enlarged view of the via-hole (right). (b)
Schematic and cross-sectional TEM images of OTS devices with a via-hole structure. (c) The typical DC I–V sweep of SiTe and N-doped SiTe devices with
a compliance current of 50 mA. (d) I–V curves of the DC sweep on 30 N-doped SiTe devices. (e) I–V characteristics of the N-doped SiTe OTS device at
different temperatures. (f) Statistical distributions of Vth and Vh of the N-doped SiTe device under 100 consecutive triangular voltage pulses (2.5 V
amplitude and 10 ms rising/falling edges). The normal distributions of Vth and Vh are shown in insets. (g) Switching behavior of the N-doped SiTe device at
a square pulse. (h) Endurance test of the N-doped SiTe device.
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view of the via-hole with a diameter of 250 nm. Fig. 1b depicts the
schematic and cross-sectional TEM images of the OTS devices with
avia-hole structure. Pristine OTS devices require a large voltage to
be applied during the initial electroforming process (Fig. S1, ESI†).
After forming, the typical DC I–V characteristics of the SiTe OTS
devices with and without nitrogen doping are shown in Fig. 1c.
The current in the subthreshold region increases exponentially
with the applied voltage mainly due to Poole–Frenkel (PF)
emission.30 Both OTS devices exhibit threshold switching behavior
with an abrupt current increasing to 50 mA (compliance current) at
the threshold voltage (Vth). OTS devices remain in the ON state
until the applied voltage decreases below the hold voltage (Vh). The
leakage current at half of the Vth drops more than one order of
magnitude from 86.8 nA to 5.5 nA by nitrogen doping. The
extremely low leakage current of N-doped SiTe is crucial for the
realization of artificial afferent neurons with low power
consumption.20 Besides the voltage sweep mode, the current
sweep was tested to further observe device characteristics (Fig.
S2, ESI†). Variations in the I–V characteristics with the same
scanning parameters of all 30 N-doped SiTe devices are compared
in Fig. 1d, which presents a distinct switching window in the
DC sweep. The temperature-dependent I–V characteristics of the
N-doped SiTe OTS device were measured, as presented in Fig. 1e.
The threshold voltage decreases from about 1 V to 0.5 V as
the temperature increases from 25 1C to 100 1C. Therefore, the
inherent response of the OTS device to the temperature can be
exploited to build a highly compact afferent neuron for thermal
perceptual computing.

Fig. 1f displays the distributions of Vth and Vh of the N-
doped SiTe OTS device under 100 consecutive triangular voltage

pulses (2.5 V amplitude and 10 ms rising/falling edges). Vth and
Vh are extracted from each dynamical transient response of
threshold switching (Fig. S3, ESI†). Vth and Vh distribute tightly
around 1.12 V and 0.69 V with a very small coefficient of
variation (CV = s/m, where s is standard deviation and m is
mean value) of 2.5% and 5.3%, respectively. Both Vth and Vh

conform to a normal distribution, as illustrated in the insets of
Fig. 1f. The excellent uniformity in Vth and Vh of the N-doped
SiTe OTS device would be conducive for achieving a steady
electrical oscillation behavior in afferent neurons. Fig. 1g con-
firms that this device can be turned on by a square pulse with a
1.5 V amplitude and turned off when the pulse is removed.
Next, the above pulses were applied to the device to test its cycle
endurance. According to Fig. 1h, the N-doped SiTe device can
withstand square pulses for up to B107 cycles with a stable on/
off current, which is ten times larger than that of a memory cell,
about 106 cycles in general.31 It should be noted that the
endurance of OTS is of critical importance for artificial neurons
in the training and inference of hardware neural networks. The
switching speed was also tested, and the device was turned on
within B15 ns at a voltage of 1.68 V, which was collected by an
oscilloscope (Fig. S4, ESI†). This switching speed is faster than
that of MIT devices (4100 ns) and fully meets the requirement
for electrical spikes emitted by afferent neurons.22,23

2.2. Photoelectron spectroscopy analysis and the band
structure of OTS

Photoelectron spectroscopy measurements were performed to
clarify the role of nitrogen doping in the leakage current
reduction, and the results are shown in Fig. 2. XPS was

Fig. 2 Photoelectron spectroscopy analysis of the OTS film. (a) XPS spectra of the N-doped SiTe film. (b) UV-vis-NIR absorption spectra (inset:
absorbance versus wavelength of light) and (c) UPS (inset: enlarged view near the zero binding energy) of SiTe-based films with and without nitrogen
doping indicating the band gap and VBM, respectively. (d) The energy band structures of the SiTe-based OTS with and without nitrogen doping. (e)
Schematic energy band diagrams of the W/OTS/W device at the equilibrium, off state and on state.
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performed to examine the elemental composition and chemical
valence states of N-doped SiTe. Fig. 2a displays the typical XPS
spectra of the as-deposited N-doped SiTe thin film, where the
peak located at 103.91 eV is associated with the Si2p state and
two spin–orbit coupling splitting peaks observed at 573.81 eV
and 584.21 eV correspond to the 3d5/2 and 3d3/2 states of Te,
respectively.32 The peak located at 398.96 eV of N1s indicates
the existence of a certain amount of Si–N bonds,33 and the
atomic percentage of the N element in N-doped SiTe is 2.4% by
comparing the peak area. To further understand the effect of
nitrogen doping on the band structure and electron transport
behavior of the OTS, UV-vis-NIR absorption spectra and UPS
were measured to determine the energy band structure of the
SiTe-based OTS with and without nitrogen doping. As shown in
Fig. 2b, the band gap of amorphous N-doped SiTe and SiTe is
quite close, around 0.79 eV by linear fitting of the near absorp-
tion edge according to the Tauc plot: (ahn)1/2 = B (hn � Eg),
where a is the absorption coefficient, hn is the photon energy, B
is a constant and Eg is the band gap. The ultraviolet photoelec-
tron spectra shown in Fig. 2c were used to examine the work
functions of the thin films. The Fermi energy (EF) of N-doped
SiTe combined with the cutoff edges of the low binding energy
region was estimated to be �4.83 eV, which shifted to a
lower energy position compared to that of the SiTe thin film.
According to the inset of Fig. 2c, the valence band maximum
(VBM, EV) values of N-doped SiTe and SiTe were calculated to be
�5.24 eV and �5.21 eV, respectively.

Based on the above measurement and calculation results,
the energy band structures of the SiTe-based OTS with and
without nitrogen doping are shown in Fig. 2d. Both devices
show symmetrical ohmic contact at the metal–semiconductor
interface as the work function of tungsten is 4.55 eV and the
SiTe-based OTS exhibits n-type conductance. Therefore, it is
necessary to consider only the effect of nitrogen doping on the
intrinsic trap of the OTS material. For the SiTe-based OTS with
a narrow bandgap, structural distortion caused by Si–Si bonds
is considered to be a dominant source of shallow traps, which
creates adjacent band tail localized states close to the extended

states in the conduction band.34 Some of the Si–Si bonds are
replaced by stronger Si–N bonds in the case of nitrogen doping,
so the band tail states are decreased. At the same time, Si–N
bonds can reduce deep traps by saturating some dangling
bonds of the silicon atoms caused by the disorder.35 The energy
barrier (EC � EF) is increased by 0.1 eV due to the reduction of
both shallow and deep traps in N-doped SiTe. It is more
difficult for electrons in the deep traps to be excited into the
extended states of the conduction band. The leakage current
accordingly decreases more than one order of magnitude by
nitrogen doping. Fig. 2e illustrates the threshold switching (TS)
process of the SiTe-based devices, which conforms to the trap-
limited transport model based on PF emission.30 The device is
in equilibrium at zero bias. Once the voltage is applied, it turns
to a non-equilibrium state. When the bias is below Vth, most
electrons hop only among the deep traps. As the voltage
increases, the energy band will bend due to unbalanced carriers
and an inhomogeneous electric field, resulting in electrons in
deep traps tunneling to shallow traps. When the bias exceeds
Vth, shallow traps are filled, and the device is turned on.

2.3. Analysis of the subthreshold region of the OTS device

According to the PF model, temperature-dependent subthres-
hold currents can assist in the analysis of the relationship
between the threshold voltage and temperature. We adopted
the subthreshold I–V data of the N-doped SiTe device shown in
Fig. 1b, as shown in the inset of Fig. 3a. The current increases
as the temperature increases from 25 1C to 100 1C, which
originates from the increased emission probability of hot
carriers at higher temperatures.36,37 The derived formula for
conduction activation energy (EA) is given by30

EA ¼ �
@ log I

@ 1=kTð Þ ¼ EC � EF � qV
Dz
2ua

(1)

where I is the current, k is the Boltzmann constant, T is the
absolute temperature (K), q is the electron charge, V is the
voltage, Dz is the inter-trap distance and ua is the thickness of
the OTS film. By calculating the middle term in eqn (1), we

Fig. 3 Analysis of the subthreshold region of the N-doped SiTe OTS device. (a) Plot of the conduction activation energy versus applied voltage. The inset
shows the subthreshold I–V characteristics of the N-doped SiTe device. (b) Temperature dependence of the threshold voltage under experimental and
fitting conditions.
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obtain the EA values at different voltages. Then, by extrapolat-
ing the linear relationship, EA is 0.408 eV at zero field, which is
close to the energy barrier measured by spectral analysis
(0.38 eV).

Based on the obtained EA, we approximated the correlation
between the threshold voltage and temperature of the N-doped
SiTe device in the hot-carrier trap-limited transport model by
the following formula:37

Vth ¼ V0e
EA
2kT (2)

where V0 is a material-dependent pre-exponential factor deter-
mined by the transfer time (t). For the same device, five DC

sweeps were performed at each temperature to analyze the
variation in the threshold voltage. In Fig. 3b, it can be observed
that the threshold voltage extracted from the experiment shows
a diminishing trend consistent with this fitting formula, which
confirms the temperature response characteristics of the semi-
conductor chalcogenide materials in the subthreshold region.

2.4. OTS-based artificial thermal afferent neurons

The perception and cognition of external thermal information
is one of the basic abilities of the human sensory nervous
system, which follows a unique strategy to perceive and process
the information almost simultaneously with femtojoule-level
ultra-low power consumption.7 Taking advantage of the low

Fig. 4 Construction of artificial thermal afferent neurons. (a) Schematic of the human sensory nervous system. Thermal stimuli from external objects are
converted into electrical spikes by receptors and afferent neurons and then transported to the cortex for further processing. (b) Schematic of the artificial
thermal afferent neuron circuit. (c) Oscillation behavior of afferent neurons under a constant voltage input. (d) Robust spiking frequency dynamic
response of afferent neurons at different temperatures. (e) Dependence of spiking frequency on temperature under the experimental and fitting
conditions.
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leakage current and inherent temperature response, the N-
doped SiTe OTS device, compared with MIT devices, has greater
potential for achieving thermal sensing and computing inte-
gration with lower power consumption. Fig. 4a elaborates on
the perception, encoding and processing of thermal stimuli
from the outside, which are implemented by a combination of
thermal receptors, afferent neurons and the cerebral cortex. In
this system, afferent neurons are very critical to achieving the
function of collecting information from receptors and then
converting them into electrical spikes.

In order to construct an energy-efficient artificial sensory
nervous system, first, a compact thermal afferent neuron with
low power consumption based on N-doped SiTe OTS is demon-
strated. As schematically illustrated in Fig. 4b, the afferent
neuron comprises a fixed resistor (RS), a capacitor (C) and an
OTS device, which has an identical circuit model as a leaky
integrate-and-fire (LIF) neuron. The RS used here is 50 kO to
provide a suitable partial voltage. When a voltage (VIN) is
applied, the capacitor charges through the charging loop as
the resistance of the OTS is larger than that of the RS. The OTS
device switches from a high resistance state (HRS) to a low
resistance state (LRS) once the voltage surpasses Vth, and then
the capacitor discharges through the discharging loop. When
the voltage on the capacitor drops below Vh, the OTS device
spontaneously returns to its HRS, and the capacitor charges
again. Under a constant voltage input, a steady electrical
oscillation behavior of the afferent neuron accompanied by
continuous switching between the HRS and LRS of the OTS
device can be produced, as shown in Fig. 4c. For the sake of
simplicity, the current flowing through the OTS device is
measured as the output response.

Frequency encoding of information is widely used in the
human sensory nervous system and SNN. Fig. 4d shows that the
oscillation frequency of afferent neurons can be modulated by
temperature. The corresponding decrease in the threshold vol-
tage with increasing temperature results in faster oscillation
behavior. It is also worth noting that our thermal afferent neuron
is capable of spiking frequency encoding over a wide tempera-
ture range from 25 1C to 100 1C without additional temperature
sensors. As a result, artificial afferent neurons based on N-doped
SiTe OTS can emulate neuromorphic temperature perception by
converting thermal signals into frequency-encoded spikes.
Therefore, the sensory nervous system built from OTS-based
artificial afferent neurons is able to perceive and process external
thermal information simultaneously. The relationship between
the spiking frequency and temperature is summarized in Fig. 4e.
Here, the frequency was measured five times at each tempera-
ture for the same device, and the results showed that the spiking
frequencies were tightly distributed for the corresponding tem-
perature. Through fitting analysis, there is a quasi-linear rela-
tionship between the spiking frequency and temperature. The
frequency-encoded artificial afferent neuron also features a bio-
frequency adaptation of hundreds of kilohertz, which provides
potential for bio-electronic interface applications.

To verify the feasibility of constructing an energy-efficient
artificial sensory nervous system with our artificial afferent

neurons, we further calculate the energy consumption of the
artificial afferent neurons (Fig. S5, ESI†). The transient power is
calculated by multiplying the input voltage by the output
current, and the energy consumption for each spike is deter-
mined by dividing the total energy consumption by the number
of spikes within a period of time. An ultra-low power consump-
tion of less than 0.3 nJ per spike for this artificial afferent
neuron over the perceived temperature range is acquired (Fig.
S6, ESI†). The low power consumption originates from the
extremely low leakage current and the relatively low threshold
voltage of N-doped SiTe OTS. Table S1 (ESI†) benchmarks our
OTS-based artificial afferent neurons with other state-of-the-art
afferent neurons. Compared with existing works in the litera-
ture, the artificial afferent neuron we propose effectively
reduces power consumption by an order of magnitude by
utilizing an N-doped SiTe OTS device with an extremely low
leakage current.

2.5. Edge detection based on artificial thermal afferent
neurons

In order to mimic the function of perception and cognition in
the biological sensory nervous system, which enables us to
recognize the most significant information from complex ther-
mal stimuli, an edge detection task of thermal perception and
processing was built based on N-doped SiTe OTS artificial
thermal afferent neurons, utilizing its capability of temperature
sensing with low power consumption. The output spikes from
artificial afferent neurons can be subjected to a pulse coupled
neural network (PCNN) for edge detection, even with complex
image backgrounds. The PCNN, as a neural network model
based on experimental observations in the animal visual cortex,
is constructed by a single layer two-dimensional simplified
neural network.38,39 Compared with traditional neural network
models, PCNN is capable of performing edge detection tasks
efficiently without training.40,41

Edge detection of the thermography of the PCNN was
demonstrated by simulation. Input thermography can be
detected and encoded into spikes by an array of artificial
afferent neurons pixel-by-pixel and, in turn, the output spikes
are fed into the PCNN, as shown in Fig. 5a. The thermography
was set within a temperature range of 20–45 1C according to the
actual situation. As aforementioned, an increase in tempera-
ture results in an increase in the frequency of the spikes (51–
146 kHz). Fig. 5b provides a brief description of the edge
detection process via the PCNN. In order to detect more
accurately, three frequency values (58, 98.5 and 139 kHz) in
the encoded image were set as thresholds to search for edge
information at different levels.16 Each pixel was traversed
iteratively. The pulse generator of the PCNN would fire when
the frequency value of the pixel is greater than the threshold or
close to that of neighboring pixels. After several iterations, the
image edges generated by the PCNN at each threshold level
were recorded. The edge details of the background, person and
kettle were determined by iterations of the three thresholds.
Finally, as shown in Fig. 5c, we obtained the complete edge
detection results by combining the edge information under the
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three thresholds. Here, PCNN-based edge detection is taken as
an example to demonstrate the great potential of our N-doped
SiTe OTS artificial thermal afferent neurons for realizing a
high-power and area-efficient thermal imaging and identifi-
cation system.

3. Conclusions

In summary, an artificial thermal afferent neuron based on the
N-doped SiTe OTS has been experimentally implemented for
perceiving and processing environmental information by con-
verting thermal signals into frequency-encoded spikes. We
remarkably decreased the leakage current of the SiTe OTS by
more than one order of magnitude from 86.8 nA to 5.5 nA by
nitrogen doping. Meanwhile, the inherent temperature
response of our OTS device assists the artificial thermal afferent
neurons in performing in situ sensing and computing, leading
to a simplified circuit structure. As a result, we have success-
fully demonstrated the realization of a highly energy-efficient
and compact artificial thermal afferent neuron, characterized
by an impressively low power consumption less than 0.3 nJ per
spike and the absence of a thermal sensor component. Further,
our simulation results show that a combination of our N-doped
SiTe OTS artificial thermal afferent neurons with a PCNN can
accomplish edge detection. From the viewpoint of the core
material design, this study paves the way for the

implementation of in-sensor computing in a highly energy
and area-efficient neuromorphic perception system.

4. Experimental
Film synthesis and characterization

N-doped Si2Te3 thin films were deposited via co-sputtering of pure
Si and Te targets with a mixed argon and nitrogen pressure of 0.5
Pa and a 40 : 5 argon–nitrogen ratio. Si2Te3 thin films were
prepared as control samples under the same conditions without
nitrogen being introduced into the sputtering chamber.
Ultraviolet-visible-near infrared (UV-vis-NIR) absorption spectra
were measured to evaluate the optical band gap of the thin films
using a Lambda 1050+ UV-vis-NIR spectrophotometer (PerkinEl-
mer, USA). X-ray photoelectron spectroscopy (XPS) and ultraviolet
photoelectron spectroscopy (UPS) analyses of the thin films were
performed using a 50 AXIS SUPRA+ instrument (Kratos, Japan) to
measure the composition of the films and estimate the Fermi
level and valence band maximum (VBM), respectively. Argon ion
etching was performed to avoid contamination before photoelec-
tron spectroscopy measurements.

Device fabrication, characterization and electrical
measurements

OTS devices with via-hole structures were fabricated on silicon
wafers. A B100 nm tungsten bottom electrode (BE) layer and a
B100 nm SiO2 insulating layer were deposited first. Electron

Fig. 5 Edge detection based on artificial thermal afferent neurons using the PCNN. (a) Schematic of the thermography edge detection process in a
PCNN with artificial thermal afferent neurons. (b) Schematic of mapping and iteration in the edge detection process. (c) The results of edge detection
using the PCNN.
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beam lithography (EBL) was used to pattern via-holes in the
SiO2 insulating layer after deposition. The top electrode region
was then defined using ultraviolet lithography. Finally, a
B50 nm OTS layer and B100 nm tungsten top electrode (TE)
layer were deposited by magnetron sputtering, followed by a
lift-off process. Scanning electron microscopy (SEM) images of
the via-hole array were obtained using a ZEISS Gemini300.
Transmission electron microscopy (TEM) characterization of
the OTS devices was performed on an FEI Titan G2 60-300. All
the electrical measurements were performed using a B1500A
semiconductor parameter analyzer, an Agilent B1530A wave-
form generator/fast measurement unit (WGFMU) and an Agi-
lent DSO7104B oscilloscope.
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