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direct selanylation of indoles:
synthesis and mechanistic insights†

Elise Ane Maluf Rios,a Carla M. B. Gomes,a Gabriel L. Silvério,a Eduardo Q. Luz, a

Sher Ali, b Caroline da Ros Montes D'Oca, a Breidi Albach, c Renan B. Camposd

and Daniel S. Rampon *a

Herein we describe the Ag(I)-catalyzed direct selanylation of indoles with diorganoyl diselenides. The

reaction gave 3-selanylindoles with high regioselectivity and also allowed direct access to 2-

selanylindoles when the C3 position of the indole ring was blocked via a process similar to Plancher

rearrangement. Experimental analyses and density functional theory calculations were carried out in

order to picture the reaction mechanism. Among the pathways considered (via concerted metalation–

deprotonation, Ag(III), radical, and electrophilic aromatic substitution), our findings support a classic

electrophilic aromatic substitution via Lewis adducts between Ag(I) and diorganoyl diselenides. The

results also afforded new insights into the interactions between Ag(I) and diorganoyl diselenides.
Introduction

Coinage metal (copper, silver, and gold) salts are among the
major players in modern catalysis.1 Although silver catalysts
have long been believed to have low catalytic efficiency in
comparison with other coinage metals, the rapid development
of silver chemistry revealed several valuable synthetic trans-
formations over the last two decades.2 In addition, silver has
been applied as homogeneous or heterogeneous mediators or
catalysts in important industrial applications.2e,3 In particular,
Ag(I) salts are employed as s-Lewis acids due to the availability
of their empty f orbitals and relativistic contraction of the
electron cloud14,1a,b,2a and as a p-Lewis acid as a result of the d10

electronic conguration which allows the back-donation of
electron density to the antibonding p* orbitals.1a,b,2a,4 These
features offer numerous opportunities in organic synthesis. For
instance, Ag(I) salts have been used in cycloadditions,5 alkyny-
lations,2a,6 cycloisomerizations,7 hydrofunctionalizations,8

halogenations,9 azidations,10 C–H functionalizations,2c,11 and
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chalcogenylations12 and also as additives in transition metal-
catalyzed reactions.13

Selenium-containing compounds are of great importance
since they show numerous biological activities14 and also play
an important role in organic synthesis12a,15 and materials
science.16 For instance, selenium or sulfur-functionalized
indoles display promising therapeutic properties,17 and some
of them are already commercially-available drugs (Fig. 1).18 In
this scenario, the development of efficient and selective
methods for the C–Se bond formation have become of para-
mount importance, which encourages studies on the direct
conversion of an inert C–H bond to a C–Se bond that can
eliminate pre-functionalized starting materials, resulting in
more step- and atom-economical synthesis.12a,19

Generally, the direct selanylation of indole derivatives under
transition metal-catalyzed20 or transition metal-free condi-
tions21 relies on the nucleophilicity of the C3 position of this
electron-rich heteroarene, and structurally diverse 3-selany-
lindoles were prepared using these methodologies. Despite the
advantages of the transition-metal free methods, the use of
stoichiometric amounts of catalysts or the synthesis of starting
materials through multistep transformations limits their
applications. With this in mind, we report the Ag(I)-catalyzed
regioselective C3 selanylation of indoles without the addition of
any external additive or ligand in a single step. The mechanism
of this reaction was also further investigated by means of
density functional theory (DFT) calculations.
Results and discussion

As shown in Table 1, 1-methylindole (1a) and diphenyl dis-
elenide (2a) were employed to optimize the reaction conditions
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Biologically relevant selenium or sulfur-functionalized indoles.
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(Table 1). The rst experiment was developed with 5.0 mol%
Ag2SO4 in DMSO (dimethyl sulfoxide) as the solvent at 100 °C
for 24 h, which furnished a 23% yield of the desired product 3a
(Table 1, entry 1). Under the same conditions of time and
temperature, when the amount of Ag2SO4 was increased to
10 mol% and 20 mol% the product 3a was obtained in 42% and
79% yields respectively (Table 1, entries 2 and 3). Additionally,
the use of 30 mol% Ag2SO4 gave the expected product in 87%
yield (Table 1, entry 4). Considering the good yields of the
desired product obtained with 20 mol% Ag2SO4, the inuence
of the reaction time was evaluated under this condition. It was
observed that a shorter reaction time slightly increased the yield
of 3a to 85% (Table 1, entry 5); however, an even shorter time
provided the product in a 65% yield (Table 1, entry 6). Next, the
reaction temperature was also evaluated (Table 1, entries 7 and
8), and when the experiments were performed at lower
temperatures, the yields of 3a were lower than that observed at
100 °C (Table 1, entry 5). On the other hand, when the
temperature was 110 °C, the reaction yield was 83% (Table 1,
entry 9). In addition, when the reaction was carried out under
inert atmosphere, the yield was 56%, which suggests that O2

could be involved in the reaction pathway (Table 1, entry 10).
The screening of the catalyst revealed that other sources of Ag(I)
were not effective even when the mol% amount of Ag(I) ions in
the system were matched (Table 1, entries 11–15) to the reaction
with Ag2SO4 (Table 1, entry 5). Finally, among the solvents
examined (Table 1, entries 16–23), DMSO was still the most
effective (Table 1, entry 5).

To further examine the efficiency of this reaction, the
substrate scope was evaluated (Table 2) under the best reaction
parameters (Table 1, entry 5). The results demonstrated that the
indole 1a was selanylated at the C3 position with moderate to
© 2023 The Author(s). Published by the Royal Society of Chemistry
good yields employing diaryl diselenides with either electron-
donating or electron-withdrawing groups (3a–e). In general,
higher yields were observed with diaryl diselenides bearing
electron-donating groups (3b and 3c), and longer times did not
improve the yields of reactions employing diaryl diselenides
with electron-withdrawing groups (3d and 3e). Moreover,
sterically-hindered diaryl diselenides were tolerated; however,
only moderate reaction yields were obtained (3f and 3g). The
reaction also worked with dialkyl diselenides, but the
compound 3h was obtained in only 38% yield. On the other
hand, the reaction of 1-benzylindole or indole afforded good
yields of 3i and 3j, respectively. In these cases, longer times (24
h) slightly increased the reaction yields. Surprisingly, the
protocol allows the direct access to 2-selanylindoles (3l) when
the C3 position of the indole ring was blocked (escatol), prob-
ably via a process similar to Plancher rearrangement.20b,22 In
addition, the electron-richer 1,2-dimethylindole provided
a good yield of 3k despite its more sterically-hindered C3 posi-
tion, and a low yield of 3m was obtained when diphenyl disul-
de was employed instead of diphenyl diselenide (2a). Finally,
the method was not suitable for diaryl ditellurides, and the
product 3n was not detected under standard conditions.

To obtain more insights into the mechanism of the current
reaction, radical scavenging experiments were conducted by
adding 1.0 equivalent of 2,6-di-tert-butyl-4-methylphenol (BHT)
or 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO). The reaction
with BHT proceeded smoothly to afford the product 3a without
affecting the yield (Scheme 1a), and the addition of TEMPO
reduced the yield but did not completely suppress the reaction,
which suggests that a radical pathway would not be dominant.
The radical mechanism was further ruled out by an experiment
employing 1.0 equivalent of diphenyl diselenide (2a) and
RSC Adv., 2023, 13, 914–925 | 915
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Table 1 Optimization of the reaction conditions

Entrya Catalyst (mol%) Solvent Time (h) Temp. (°C) Yieldb,d (%)

1 Ag2SO4 (5) DMSO (1.0) 24 100 23
2 Ag2SO4 (10) DMSO (1.0) 24 100 42
3 Ag2SO4 (20) DMSO (1.0) 24 100 79
4 Ag2SO4 (30) DMSO (1.0) 24 100 87
5 Ag2SO4 (20) DMSO (1.0) 18 100 85
6 Ag2SO4 (20) DMSO (1.0) 12 100 65
7 Ag2SO4 (20) DMSO (1.0) 18 80 66
8 Ag2SO4 (20) DMSO (1.0) 18 60 58
9 Ag2SO4 (20) DMSO (1.0) 18 110 83
10c Ag2SO4 (20) DMSO (1.0) 18 100 56
11 AgNO3 (20) DMSO (1.0) 18 100 32
12 AgNO3 (40) DMSO (1.0) 18 100 60
13 AgBF4 (40) DMSO (1.0) 18 100 29
14 AgCl (40) DMSO (1.0) 18 100 25
15 AgOAc (40) DMSO (1.0) 18 100 36
16 Ag2SO4 (20) DMF (1.0) 18 100 37
17 Ag2SO4 (20) NMP (1.0) 18 100 45
18 Ag2SO4 (20) 1,4-Dioxane (1.0) 18 100 11
19 Ag2SO4 (20) Isopropanol (1.0) 18 100 9
20 Ag2SO4 (20) Water 18 100 33
21 Ag2SO4 (20) THF 18 100 32
22 Ag2SO4 (20) DCE 18 100 2
23 Ag2SO4 (20) Toluene 18 100 20

a Reaction conditions: 1a (0.50 mmol), 2a (0.25 mmol), AgX (mol%) and dry solvent (1.0 mL) under air atmosphere. b Isolated yields. c Under argon
atmosphere. d In all reactions, we have not identied any side products.
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TEMPO, which afforded a 70% yield of 3a (Scheme 1a). In order
to evaluate if Lewis adducts between Ag(I) and diorganoyl dis-
elenides (1) are involved in the mechanism, we conducted an
experiment using anions with a high affinity to Ag(I) that can
compete with diorganoyl diselenides (1) (Scheme 1b). In this
way, the reaction yield of 3a was only 11% with KBr as an
additive (1.0 equivalent) under optimized conditions, which
indicates that these Lewis adducts could be involved. The yield
of 3a was 35% when the reaction was developed under inert
atmosphere (Scheme 1c), which suggests an important role for
O2 from atmospheric air in this protocol. In addition, when the
reaction was carried out in another polar aprotic solvent (N,N-
dimethylformamide, DMF) under O2 atmosphere, the yield of
3a was increased to 45% (Scheme 1d) when compared to the
reaction in DMF under air atmosphere (Table 1, entry 16;
Scheme 1d). Regarding the role of O2 from atmospheric air
(Scheme 1d), given the reaction stoichiometry of 1 (0.50 mmol)
and 2 (0.25 mmol), it seems that O2 can restore the diorganoyl
diselenides (1) by oxidation of the Ag(I)-organoselenolate.23 It is
916 | RSC Adv., 2023, 13, 914–925
well known that DMSO can also regenerate diorganoyl dis-
elenides (1) by oxidation of organoselenolate anions;24 however,
an experiment using DMF and 5.0 equivalents of DMSO under
inert atmosphere gave only 28% of 3a, further supporting the
role of O2 in this reaction (Scheme 1d). Given the data obtained
from the control experiments (Scheme 1), plus the reaction
regioselectivity at C3 position of indoles (1), we believe that the
favorable interaction between the so Lewis acid Ag(I) and the
so Lewis base selenium on the diorganoyl diselenides (2) is
crucial in reducing the diselenide bond order, then accelerating
its nucleophilic cleavage by the indole derivatives (1) via elec-
trophilic aromatic substitution.23e,25

In order to further shed light on the reaction mechanism,
calculations at the M06-2X/BS level of theory (BS: LANL2DZ for
Ag atom and 6-311++G(d,p) for other atoms) were performed
(computational details are provided in the Experimental
section). Considering that a radical pathway does not have
support based on the experimental results (Scheme 1), addi-
tional plausible mechanistic proposals were investigated
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Table 2 Substrate scope for silver-catalyzed direct selanylation of indolesa,b

a Reaction conditions: 1 (0.50 mmol), 2 (0.25 mmol), Ag2SO4 (20 mol%) and dry DMSO (1.0 mL) under air atmosphere. b Isolated yields. c 24 h.

© 2023 The Author(s). Published by the Royal Society of Chemistry RSC Adv., 2023, 13, 914–925 | 917
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Scheme 1 Control experiments for mechanistic studies.
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considering the reaction between 1a and 2a in the presence of
Ag2SO4. In a recent work on the silver-catalyzed synthesis of
diaryl selenides using arylboronic acids,26 authors proposed
that the reaction mechanism involves the formation of [RSe–
Ag(III)–SeR]+ as a key intermediate, leading to the nal product
R–Se–Ar aer additional steps. We checked this hypothesis for
the formation of 3a; however, all of the attempts to optimize
[PhSe–Ag(III)–SePh]+ as a minimum failed, leading to 2a coor-
dinated with Ag(I). For that reason, we turned our attention to
two other mechanisms: (i) concerted metalation–deprotonation
(CMD) and (ii) electrophilic aromatic substitution. For mecha-
nism (i), the transition state structure (TSS1(i)) involved in
a CMD process was located as presented in Fig. 2, consistent
with the formation of a new Ag(I)–C bond concerted with the
deprotonation of 1a by SO4

2−. For such event, an energy barrier
of 28.7 kcal mol−1 was found. As mentioned, all attempts to
optimize Ag(III)–phenylselenolate produced from an oxidative
addition of 2a to Ag(I) as a minimum failed; however, we found
that the reaction proceeds to the rate determining step forming
3a via nucleophilic attack of the C3 atom of Ag(I)–indole inter-
mediate (INT(i)) to 2a with a barrier of 35.0 kcal mol−1 in an
overall endergonic process. The CMD mechanism is commonly
918 | RSC Adv., 2023, 13, 914–925
observed for higher valency transition metals (e.g., Pd(II), Rh(III),
Ru(II)), therefore the barrier likely relies on low valence nature of
Ag(I).

Regarding mechanism (ii), taking into account the solvated
ions in DMSO (Ag(I) and SO4

2−), a TSS consistent with the
nucleophilic attack of indole C3 to 2a forming a new Se–C bond
was located (TSS1(ii)). As shown in Fig. 3, an initial complex
formed by 1a and 2a coordinated with Ag(I) was conrmed. A
rate determining energy barrier of 25.3 kcal mol−1 was
observed, emphasizing the key role of the catalyst supporting
the phenylselenolate departure. On the basis of bond distances,
results indicate that the rst step of the reaction occurs asyn-
chronously; in the TSS1(ii), the Se–C bond formation is 87%
completed, whereas the Se–Se bond is only 35% cleaved.
Although we managed to locate the TSS involved in the depro-
tonation of the tetrahedral intermediate (INT(ii)) by the sulfate
ion (TSS2(ii)), calculations suggest that the formation of 3a,
along with the regeneration of the catalyst, occurs in a barrier-
less fashion, as TSS2(ii) features a lower energy (17.9 kcal mol−1)
than the preceding stationary point (19.5 kcal mol−1), as
depicted in Fig. 3. We have also investigated the deprotonation
of INT(ii) promoted by Ag(I)–phenylselenolate formed in the
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Potential energy surface (PES) of the CMD mechanism (i) proposed for the formation of 3a obtained using M062X functional combined
with LANL2DZ (for Ag atom) and 6-311++G(d,p) (for additional atoms). Atom color: S-yellow, O-red, Se-orange, N-blue, C-gray, and H-white.
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rst step. In this case, however, the results indicated a much
higher energy barrier of 30.9 kcal mol−1, conrming that the
reaction pathway involves sulfate ions acting as a base (details
Fig. 3 Potential energy surface (PES) of the electrophilic substitution m
functional combined with LANL2DZ (for Ag atom) and 6-311++G(d,p) (fo

© 2023 The Author(s). Published by the Royal Society of Chemistry
are provided in ESI†). Despite the well-known higher basicity of
free phenylselenolate, it seems that the so Lewis acid Ag(I)
considerably reduces its basicity, therefore the deprotonation
echanism (ii) proposed for the formation of 3a obtained using M062X
r additional atoms).

RSC Adv., 2023, 13, 914–925 | 919
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Scheme 2 Full catalytic cycle.
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with free sulfate ion has a lower energy barrier. Although
additional proposals could be envisioned, our calculations
suggest that the classic electrophilic aromatic substitution
mechanism for silver-catalyzed selanylation of indoles is pre-
dicted to be energetically feasible, considering the experimental
conditions evaluated herein.

In view of the experimental data and theoretical calculations,
we found that the energetically plausible mechanism follows
a classic electrophilic aromatic substitution, where the inter-
action between the so Lewis acid Ag(I) and the so Lewis base
selenium on the diorganoyl diselenides (2) is crucial to support
the organoylselenolate departure (Fig. 3). Also, we obtained
experimental data agreeing with O2 from air atmosphere
restoring the diorganoyl diselenides (1) by oxidation of the
Ag(I)–organoselenolates.23 Scheme 2 outlines the full catalytic
cycle exemplied by 1a and 2a, which starts with the formation
of a Lewis adduct between Ag(I) and diphenyl diselenide (2a)
(Fig. 3, 2a/Ag(I)). Then, the nucleophilic attack of the C3
position of 1-methylindole (1a) to the Se–Se bond via TSS1(ii)
releases the Wheland intermediate INT(ii) and Ag(I)–phenyl-
selenolate. Finally, the aromaticity is restored via a barrierless
deprotonation with a sulfate anion to afford 3a.
Conclusions

In summary, we developed the Ag(I)-catalyzed direct selanyla-
tion of indoles with diorganoyl diselenides. The reaction gave 3-
selanylindoles with high regioselectivity and also allowed the
direct access to 2-selanylindoles when the C3 position of the
indole ring was blocked via a process similar to Plancher
920 | RSC Adv., 2023, 13, 914–925
rearrangement. DFT calculations failed to optimize Ag(III)–
organoylselenolates to a minimum, ruling out these interme-
diates. Experimental and theoretical data supported an ener-
getically plausible mechanism in which Lewis adducts between
Ag(I) and diorganoyl diselenides follow an electrophilic
aromatic substitution with subsequent barrierless deprotona-
tion by a sulfate anion to afford 3-selanylindoles.
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