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Due to the massive growth of scientific publications, literature mining is becoming increasingly popular for

researchers to thoroughly explore scientific text and extract such data to create new databases or augment

existing databases. Efforts in literature-mining software design and implementation have improved text-

mining productivity, but most of the toolkits that mine text are based on traditional machine-learning-

algorithms which hinder the performance of downstream text-mining tasks. Natural-language

processing (NLP) and text-mining technologies have seen a rapid development since the release of

transformer models, such as bidirectional encoder representations from transformers (BERT). Upgrading

rule-based or machine-learning-based literature-mining toolkits by embedding transformer models into

the software is therefore likely to improve their text-mining performance. To this end, we release

a Python-based literature-mining toolkit for the field of battery materials, BatteryDataExtractor, which

involves the embedding of BatteryBERT models in its automated data-extraction pipeline. This pipeline

employs BERT models for token-classification tasks, such as abbreviation detection, part-of-speech

tagging, and chemical-named-entity recognition, as well as new double-turn question-answering data-

extraction models for auto-generating repositories of inter-related material and property data as well as

general information. We demonstrate that BatteryDataExtractor exhibits state-of-the-art performance on

the evaluation data sets for both token classification and automated data extraction. To aid the use of

BatteryDataExtractor, its code is provided as open-source software, with associated documentation to

serve as a user guide.
1 Introduction

Scientic publications have long been a critical source of
information for researchers to gain insights into the latest
ndings of scientic endeavor and use them to accelerate data-
driven discoveries. In the area of materials science, for example,
successful data-driven techniques have been applied to the
design of new materials such as catalysts,1,2 solar cells,3–5

nuclear materials,6,7 and battery materials.8–11 Key to these
materials discoveries is the quality and quantity of data. While
computationally generated databases have led to the spin-off of
many materials-discovery projects since the launch of the
Materials Genome Initiative,12–15 literature-based data extrac-
tion is becoming increasingly popular to make use of the latest
literature data to create new databases or to augment existing
materials databases.16,17
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Compared to other data sources, literature-text data are fully
processed (as supposed to raw data) and readily accessible in
electronic format, while their total number perpetually
increases with advancing time. However, scientic-literature
texts are lengthy, diverse and unstructured, which makes it
difficult for researchers to screen the literature in order to
obtain useful information. Literature mining is thus becoming
of high demand for scientic-information retrieval and knowl-
edge extraction. Efforts have thus been invested into text
mining by manually labeling hundreds of scientic papers11,18,19

to serve supervised or semi-supervised machine-learning (ML)
methods that automate large-scale database curation such as
synthetic parameters;20–22 while natural-language-processing
(NLP) methods and ML methods have been employed to auto-
generate materials properties.23–27 Apart from data extraction,
text mining can also assist in the reviewing of research
trends28–30 and provide latent scientic information using
unsupervised ML methods.31–33

In order to improve the efficiency and effectiveness of liter-
ature mining and adapt it to a specic materials domain such as
batteries, several studies have been dedicated to the develop-
ment of the chemistry-aware toolkit, e.g. ChemDataExtractor34,35

and PDFDataExtractor,36 whose functionalities are based on
NLP and ML algorithms. For example, ChemDataExtractor v1.3
Chem. Sci., 2022, 13, 11487–11495 | 11487
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embraces a hybrid system for chemical-named-entity recogni-
tion (CNER), including regular expression-based, dictionary-
based, and conditional-random-eld (CRF)-based37 recog-
nizers. It also uses rule-based phrase parsing and table parsing
to enable database auto-generation.34

Recent years have witnessed a particularly rapid develop-
ment of text mining and NLP technologies38 due to the intro-
duction of huge deep-learning models, such as long short-term
memory (LSTM)39 and bidirectional-encoder representations
from transformers (BERT).40 Transformer-based language
models have achieved state-of-the-art results on almost all
downstream NLP tasks, such as named-entity recognition and
question-answering.40,41 Huge transformer models have also
been created in the area of scientic literature by training on
subject-specic data. Models such as MatBERT42 and MatSci-
BERT43 have demonstrated their usage on tasks including text
classication and CNER. Meanwhile, the BatteryBERT44

language model has provided domain-specic capabilities
within materials science; thereby, it can classify papers into
those that concern battery materials or otherwise, as well as
distinguish the type of battery material that has been
mentioned as belonging to an anode, cathode or electrolyte. The
aforementioned ‘chemistry-aware’ toolkit, ChemDataExtractor,
can also be updated by embedding its capabilities into a trans-
former model. One example is the latest version of Chem-
DataExtractor (v2.1), which takes advantage of the ne-tuned
SciBERT45 language model to achieve both organic and inor-
ganic CNER simultaneously.46

However, current efforts that apply transformer models to
chemistry-based text-mining processes have remained largely
unexplored, partly due to a lack of integrated soware. A single
toolkit that is designed for automatically extracting text about
chemicals and properties from scientic documents that is
based on transformer models, is still needed to enhance the
productivity of mining scientic text. To this end, we designed
a transformer-based data-extraction pipeline by embedding
pretrained BatteryBERT models into a Python toolkit, Batter-
yDataExtractor. To the best of our knowledge, BatteryDataEx-
tractor is the rst soware that uses a full deep-learning-based
pipeline of a language model for the automatic extraction of
cognate chemical and property data.

The main contributions of this work are as follows. We
release the transformer-based battery-specic literature-mining
toolkit, BatteryDataExtractor, whose soware architecture is
based on that of ChemDataExtractor, but the core part of the
architecture has been changed into BERT-based models.34,35

The rule-based and ML-based NLP plugins within Chem-
DataExtractor were replaced by a ne-tuned BatteryBERT
models,44 including abbreviation detection, part-of-speech
(POS) tagging, and CNER, all of which are open source and
available online. We also designed a novel double-turn
question-answering system to automate the extraction of both
materials and property data as well as general information from
scientic documents. The BatteryBERT-based automated data-
extraction pipeline does not need any manually encoded
parsing rules; instead, the tool can be implemented by just
a single line of code in BatteryDataExtractor. Both the NLP
11488 | Chem. Sci., 2022, 13, 11487–11495
token-classication plugins and the double-turn question-
answering-based data-extraction method achieved better
performance than ChemDataExtractor when tested on evalua-
tion data sets. In addition, several functions have been intro-
duced in the BatteryDataExtractor toolkit in order to improve its
soware user-friendliness, including updated web scrapers,
document readers and tokenizers, a database auto-saving
option, an original text-saving option, and a device-selection
option. Full documentation of the code is also provided to
serve as a user guide.
2 Implementation details
2.1 System overview

The system overview of BatteryDataExtractor is shown in Fig. 1.
Most stages of the data-extraction pipeline are consistent with
those of ChemDataExtractor:34,35 the HTML/XML le is con-
verted into raw text by a document reader, which is then pro-
cessed by several NLP tools including abbreviation detection,
POS tagging, CNER, and question-answering-based information
extraction. The nal output is a database consisting of scientic
information such as {material, property} data. Note that the
NLP tools which were based on manually encoded rules or ML-
based algorithms in ChemDataExtractor have been all
embedded into transformer models in the new soware. In
addition, we introduced a “double-turn” question-answering
strategy for the automatic data extraction of materials and
properties. Overall, the BatteryBERT-based BatteryDataEx-
tractor tool outperforms the latest ChemDataExtractor on the
battery-related evaluation data sets.
2.2 Token classication models and data sets

Abbreviation detection, POS tagging and CNER are all essen-
tially token-classication tasks, which can be formulated as
a problem where an input sequence of words {w1, w2, w3, w4,
.} is processed by the language model to predict as a sequence
of output labels {l1, l2, l3, l4, .}. BERT has been demonstrated
to produce state-of-the-art performance on text classication by
ne-tuning the language model on the specic data sets.47,48 In
order to extract data within the battery domain, we thus chose
the pretrained BatteryBERT model as a starting point for the
downstream token-classication tasks. The transfer-learning
characteristic of BERT makes it easy to apply BatteryBERT to
the token-classication tasks by just adjusting the nal layer
(dense layer) of the transformer model. Fig. 2 shows the archi-
tecture of the ne-tuned token-classication model. The input
sentence is rstly tokenized into sub-words which are then fed
into BatteryBERT. The WordPiece tokenizer was used for this
task; this splits a single word into multiple sub-words according
to its frequency of occurrence within the corpus. For example,
the word “graphite” in Fig. 2 is split into three sub-words:
“graph”, “##it”, and “##e”. Its input embedding is then pro-
cessed by the pretrained BatteryBERT model into contextual
representations, which are, in turn, fed into the nal dense layer
of the language model to make predictions about the corre-
sponding tokens. The predicted labels vary with different token-
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 System overview of BatteryDataExtractor. The natural-language-processing pipeline firstly converts the HTML/XML raw text into tokens,
which are then fed into BERT models for the downstream tasks, including abbreviation detection, part-of-speech tagging, chemical-named-
entity recognition, and question answering. Abbreviation detection identifies the abbreviation words (SHORT) and their long form (LONG). Part-
of-speech tagging marks up words as corresponding to a particular part of speech (e.g. DT: determiner, JJ: adjective, NN: noun, CC: coordi-
nating conjunction) based on its context. Chemical-named-entity recognition detects the chemical name (MAT). The Q&A system retrieves data,
such as the materials-property data, using the double-turn or general question-answering strategy. The retrieved data are saved into the final
database.
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classication tasks. In the CNER task, for example, the label of
the “graphite” token will be predicted as “MAT”.

The data sets used for training the classier are shown in
Table 1. We adopted the “BIO” tagging scheme to label tokens,
where a word/sub-word is labeled as a B-label if it is the
beginning of an entity, or an I-label if the word/sub-word is
contained inside the same entity. Other tokens are labeled as
“O” if they do not belong to any entity. For each task, Batter-
yBERT was ne-tuned on a mixed data set to generalize its
model performance on various kinds of data sets. For example,
we trained our models on four different training sets:
CHEMDNER, MatScholar, SOFC, and BioNLP.49–52 These data
sets contain both organic and inorganic materials from
different areas of materials science, such as fuel cells and
biomaterials. By mixing training data that span various
domains, we believe that the ne-tuned CNER module can
identify more kinds of chemical names compared to just
training on one specic data set.
Fig. 2 Token-classification-model architecture of BatteryBERT. E represe
token i. [CLS] is the special symbol for classification output, and [SEP] is

© 2022 The Author(s). Published by the Royal Society of Chemistry
The training hyperparameters and implementation details
are as follows. All downstream models were trained with
a maximum sequence length of 512 and a batch size of 16 on
eight NVIDIA DGX A100 GPUs on the ThetaGPU cluster at the
Argonne Leadership Computing Facility (ALCF). We also tested
the epoch size from 1 to 15, the batch size {16, 32} and the
learning rate {2 � 10�5, 3 � 10�5, 5 � 10�5} for all tasks. The
training time was �15 minutes for POS tagging, �1 h for CNER,
and �7 h for abbreviation detection.
2.3 BatteryBERT-based automated data-extraction model

2.3.1 Double-turn question-answering model. The
BatteryBERT-based automated data-extraction model makes
use of the ne-tuned BatteryBERT on question-answering data
sets, which has also been designed for interactive use at https://
www.materialsforbatteries.org/.44 This Q&A model was
embedded into BatteryDataExtractor in a fashion that we
nts the input embedding. T represents the contextual representation of
the special symbol to separate non-consecutive token sequences.

Chem. Sci., 2022, 13, 11487–11495 | 11489
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Table 1 Data sets for abbreviation detection, POS tagging, and CNER

Data set type Data set name Total number Ref.

Abbreviation detection PLOS 1 161 888 54
SDU@AAAI-21 17 457 55

POS tagging Conll2003 10 677 56
The Penn Treebank 3828 57

CNER CHEMDNER 12 712 49
MatScholar 5454 50
SOFC 873 51
BioNLP 93 515 52

Fig. 3 BatteryBERT-based automated data-extraction model for
{material, property} data in BatteryDataExtractor.
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could adopt a “double-turn” question-answering strategy for
data extraction. The double-turn question-answering method
transforms a relation-extraction task into a problem of detect-
ing answer spans from the context of the text.53 For example, we
designed a BERT-based material parser that retrieves the
answers to two carefully sequenced rounds of questions in order
to extract both the material and property data. At the start of
this process, users need to specify the property name that one
wishes to nd. The material parser will then ask the following
question based on the provided textual context:

“What's the value of the ‘PROPERTY_NAME’?”

Once a valid property value has been found, the second
question will be:

“Which material has a ‘PROPERTY_NAME’ of
‘ANSWER_OF_THE_PREVIOUS_QUESTION’?”

Aer that, the relations between the property value and the
specic material will be eventually extracted. Fig. 3 shows an
example of how the {material, property} data can be extracted
with a few lines of code in BatteryDataExtractor. By just
providing the property name “capacity” and “voltage” in the
“add_models_by_names” function of the Document class
(Fig. 3a), data relations can be found as “PropertyData” with
several elds including value, unit, raw value, specier name,
and material name. Compared to the previous way of extracting
data by manually dening multiple rules in a specic materials
domain of interest,24,34 this new relation-extraction method
greatly reduces the time of human intervention.

In addition, a condence-score threshold can be set for the
double-turn question-answering system, where a higher
condence-score threshold means a higher precision and
a lower recall. Hence, it is also much easier to control the data
quality and quantity than the rule-based method, in which the
model behavior cannot be changed easily once the human-
encoded rules have been determined.

Another advantage of the BatteryBERT-based automated
model is its model generalizability. As is demonstrated in
Fig. 3b, the ne-tuned BatteryBERT can also extract property
data in other areas of materials science; for example, the
property, “melting point”. This is because the BatteryBERT
model is huge and capable of capturing lengthy contextual
information, not only about batteries but also about all kinds of
materials and their cognate properties, which can similarly be
detected and extracted with just a few lines of code. Even
11490 | Chem. Sci., 2022, 13, 11487–11495
though BatteryBERT is not the optimal language model to
extract data from another materials domain, since it was not
trained on an appropriate domain-specic corpus, Fig. 3b
demonstrates the ability and potential of BatteryDataExtractor
to extract data about materials and properties other than those
associated with battery materials.

2.3.2 General question-answering model. Apart from the
extraction of materials and property data, a general parser was
also included in BatteryDataExtractor in order to retrieve more
general data information. Fig. 4 shows three examples of
general information that can be extracted about: battery devices,
the application of batteries, and apparatus that have been used
in characterizing a material. Fig. 4a exemplies an instruction
for device-based data extraction which has already been
demonstrated previously.44 Users only need to specify the name
or category of the general information in the “add_gener-
al_models” Python function, and BatteryDataExtractor can then
automatically look for the relevant information that exists in the
textual context. It is the same for the non-battery applications
(Fig. 4b), in which the name of a materials-characterization
apparatus used to dene a materials characteristic task is pre-
dicted as a nal output. Note that our model is able to predict the
correct information even when the specier name is not explicitly
present in the textual context (apparatus versus instrument).
Moreover, instead of inputting only the name of the general
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 BatteryBERT-based automated data-extraction model for
general information in BatteryDataExtractor.
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information, users can also select a self-dened option to ask any
other questions by setting “self_dened” as True. As is shown in
Fig. 4c, any question such as: “Which cathode is commonly used
in electric vehicles?” can be answered only if the nal output has
a condence score higher than that of the threshold. This
“add_general_models” function enables BatteryDataExtractor to
extract various kinds of data in a complicated setting, which proves
its ability to create large and diverse data sets for mining text from
the scientic literature.

To summarize, the transformer-based automated data-
extraction model is achieved by embedding the ne-tuned
question-answering BatteryBERT model into
© 2022 The Author(s). Published by the Royal Society of Chemistry
BatteryDataExtractor. A new ‘double-turn’ question-answering
strategy was adopted to extract interdependent material and
property information. Extracting {material, property} data or
general information only requires users to provide the specic
name of a property or general information and its corresponding
contextual text. In certain situations, users can also obtain the data
based on the self-dened questions. This BatteryBERT-based
automated model can accelerate the data-extraction process
without any requirement to invest in substantial amounts of time
and tedium onmanually writing rules. The combined use of these
material-based and general-information-based tools has huge
potential for scientists to conduct various text-mining research.
The data-extraction model has also demonstrated decent results
on the evaluation data sets, which will be discussed below.
2.4 Other NLP features

Several important updates about BatteryDataExtractor are
introduced in this section, which are not directly related to the
transformer model. Instead, those new NLP features aim to
improve the user experience based on the user feedback of
ChemDataExtractor over the past few years. Full instructions for
users can be found in the code documentation, while a brief
overview of those minor updates is given here:

� Web scraper and document reader. The bespoke web
scrapers and document readers of ChemDataExtractor have
been updated in BatteryDataExtractor according to the latest
policies from three publishers (Royal Society of Chemistry,
Elsevier, and Springer), including a new le processor for JATS-
format XML les.

� Sentence tokenizer. BatteryDataExtractor uses a sentence
tokenizer, SciSpacy, which has been specically trained on
scientic text. This tokenization package has been demon-
strated to operate robustly on scientic documents.58

� Save the database option. The extracted data can be auto-
matically saved into a local database with the text, CSV, and
JSON format by just a single line of code. It is not necessary to
post-process the data each time before saving to the database.

� Save the original text option. The original text of a docu-
ment or paper from which the data were extracted can be saved
by specifying “original_text ¼ True” when initializing the
automated data-extraction model (see, for example, in Fig. 3b
and 4b). This update can help to evaluate the accuracy of the
database output and check the model performance.

� Choose CPU or GPU. Since BatteryDataExtractor employs
an advanced and huge deep-learning model, a high-
performance GPU can accelerate its data extraction. Thus, we
provide an option for users to specify which device is to be used.
The default option remains as CPU, for user convenience.
3 Evaluation
3.1 Evaluation results for token classication

The common metrics for evaluating a token-classication
model are precision, recall and F1-score. Precision represents
the proportion of predicted positives that is truly positive. Recall
is the proportion of actual positives that is correctly classied.
Chem. Sci., 2022, 13, 11487–11495 | 11491
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The F1 score combines precision and recall into a single metric.
The corresponding equations are given by:

Precision ¼ TP

TPþ FP
(1)

Recall ¼ TP

TPþ FN
(2)

F1-score ¼ 2
Precision�Recall

PrecisionþRecall
(3)

where TP denotes true positive, FP false positive, and FN false
negative.

In contrast to other classication tasks, these metrics differ
for CNER, POS tagging, and abbreviation detection in that all
words need to be predicted correctly in order for a prediction to
be counted as correct. We used the Python package, seqeval, for
the token-classication evaluation, which is designed for
sequence-labeling evaluation that also supports the “BIO”
tagging scheme.59,60

Table 2 lists the best F1-score of different models on the
specic data set. The evaluation details for all hyperparameters
can be found in the ESI.† ChemDataExtractor 2.0 was evaluated
in order to provide a comparative reference to a rule-based
‘chemistry-aware’ NLP soware architecture; version 2.0 is the
last version of ChemDataExtractor prior to the introduction of
transformer models into its soware framework. Nevertheless,
the latest ChemDataExtractor version 2.1 was also chosen for
evaluation, in which the ne-tuned SciBERT model has been
included in the CNER toolkit. The BatteryOnlyBERT-cased
models achieved the highest F1 score for abbreviation detec-
tion, and the BatteryOnlyBERT-uncased model exhibited the
highest F1-score on CNER tasks, while the BERT-base-cased
model afforded the best performance on POS tagging. The
three best models were embedded into BatteryDataExtractor
and have also been released on the Hugging Face website for
independent use (https://huggingface.co/batterydata/). For the
abbreviation-detection task, the F1 score was not calculated
for ChemDataExtractor v2.0/v2.1, since this soware can only
detect a pair of abbreviation spans when both the short words
and their long form exist in a sentence, while BatteryDataEx-
tractor can detect either the abbreviation alone or as a pair. For
the CNER model, all of the four BatteryBERT models have
Table 2 F1-score of abbreviation detection, CNER, and POS tagging
for six BERT-based models, including BatteryBERT, BatteryOnlyBERT,
base BERT, as well as that for ChemDataExtractor v2.0 and v2.1

Model
Abbreviation
detection CNER POS tagging

BatteryBERT-cased 0.9502 0.9584 0.9667
BatteryBERT-uncased 0.9475 0.9578 0.9632
BatteryOnlyBERT-cased 0.9516 0.9589 0.9640
BatteryOnlyBERT-uncased 0.9492 0.9598 0.9605
BERT-base-cased 0.9491 0.9458 0.9669
BERT-base-uncased 0.9464 0.9517 0.9633
ChemDataExtractor v2.0 — 0.6998 0.8649
ChemDataExtractor v2.1 — 0.8882 0.8649
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a better performance than the original BERT model, which is as
expected since they were further pretrained on the battery
corpus. The much lower F1 score of ChemDataExtractor v2.0
might be due to the fact that its legacy CNER capabilities were
not specically trained on the data set that was used for ne-
tuning the BatteryBERT models. By contrast, the F1-score of
ChemDataExtractor v2.1 is slightly lower than that of Batter-
yDataExtractor, as the former model was also not trained
specically on the ne-tuned CNER datasets. However, Chem-
DataExtractor v2.1 still performs better than v2.0 on the CNER
task due to the nature of deep-learning models. The new
training set includes material names that ChemDataExtractor
has never seen, such as biomaterials and a range of the inor-
ganic materials. For POS tagging, the reason why the original
BERT model demonstrates the best performance relative to
other models might be that the POS-tagging training set is not
relevant to scientic text; rather, it pertains to a general English-
language-based data set. Since the original BERT model was
pretrained on a generic English corpus, such as books and
Wikipedia text, it is expected to show better evaluation results
when tested on a generic English data set. The F1 score was for
POS tagging on all the BERT-relatedmodels are higher than that
of ChemDataExtractor v2.0/v2.1, for the same reason as the
evaluation results for the CNER task.

Overall, the BERT and BatteryBERT models outperform
ChemDataExtractor v2.0 and v2.1 which encodes the rule-based
and SciBERT-based algorithms. Furthermore, we believe that
the BatteryBERT-based BatteryDataExtractor can be more reli-
able for ‘chemistry’ text-mining tasks such as information
retrieval and data extraction, especially in the battery domain.
3.2 Evaluation results for the BatteryBERT-based automated
data-extraction model

The precision and recall metrics were also adopted for the
evaluation of the automated data-extraction model. For this
framework, we focus on the evaluation of materials-property
data extraction based on the double-turn question-answering
model. Thereby, precision is the fraction of the correct
(“True”) data in the evaluation data set, and recall is the fraction
of the data relation that is extracted from the data set (vide supra
for details).

An evaluation set of materials-property data was sampled
from themanually labeled database24 consisting of a total of 100
data records of materials with ve battery-material properties:
capacity, voltage, Coulombic efficiency, energy, and conduc-
tivity. Each data record includes the correct material name
while its properties all carry their correct corresponding value
and units; the original context wherefrom the data are extracted
is also provided. We used an “add_models_by_names” function
with the property name as the input for BatteryDataExtractor to
extract the data according to the contextual text. The property
data were then retrieved with condence scores assigned to
them.

Fig. 5 shows the performance of BatteryDataExtractor on this
evaluation data set. Four different previously ne-tuned
question-answering models were tested for the data extraction
© 2022 The Author(s). Published by the Royal Society of Chemistry
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of properties. These models show a similar trend in their
precision and recall performance. If no condence-
scorethreshold is used, all data can be extracted, but the
precision is only slightly above 70%. However, the precision
score increases rapidly when this threshold is employed, as it
can lter out the data with a condence score that is lower than
the threshold. Amongst the four models, the BatteryBERT-cased
model demonstrates the highest recall when the condence-
score threshold is larger than 0.2, and also the highest preci-
sion when using a threshold between 0.2 and �0.45. Therefore,
the BatteryBERT-cased model was embedded in Batter-
yDataExtractor for the double-turn question-answering system,
given that this model has also been demonstrated to have the
best performance on distinguishing types of battery-device
data.44 Note that when using a condence-score threshold of
0.1, the precision can be above 80% for most models, while
around four-hs of data still remain in the database. A preci-
sion of 80% is comparable to that of the rule-based data-
extraction methods that are implemented in ChemDataEx-
tractor,24 while BatteryDataExtractor most likely has the capacity
to increase the precision score even further by setting a higher
threshold. This proves that BatteryDataExtractor has huge
potential to bypass rule-based data-extraction methods and
Fig. 5 Evaluation results of (a) precision and (b) recall as a function of
the confidence-score threshold.

© 2022 The Author(s). Published by the Royal Society of Chemistry
auto-generate databases through its embedding of the Batter-
yBERT model.

4 Conclusions

This work has demonstrated the benets of embedding BERT
models into ‘chemistry-aware’ text-mining soware for auto-
matically extracting chemical information from scientic
documents. The ne-tuned BatteryBERT models outperform
the rule-based NLP methods within ChemDataExtractor in
terms of its token-classication tasks: abbreviation detection,
POS tagging, and CNER. Moreover, by embedding the new ne-
tuned double-turn question-answering model into Batter-
yDataExtractor, the data-extraction pipeline can be switched
into another paradigm, where the tedious input of manual rules
is no longer required, and inter-related material and property
data can be instead implemented with only a few lines of code.
Huge deep-learning models such as BatteryBERT can greatly
accelerate this text-mining process. Due to the complicated
model architecture and the large number of parameters that are
necessitated by transformer models, the precision and recall of
BERT-based models can remain higher than those imple-
mented by rule-based or ML-based algorithms. In addition to
extracting materials-property data, BatteryDataExtractor can
also retrieve general information from text of scientic docu-
ments by inputting the name of the general information or
asking user-dened questions. This function demonstrates the
potential power of this approach to create diverse databases
from the text in the scientic literature.

One limitation of embedding BERT models into Batter-
yDataExtractor is that the transformer models are so large, such
that multiple high-performance GPUs are required for large-
scale data-extraction processes. Several tricks can be helpfully
employed in order to improve the efficiency of BatteryDataEx-
tractor, such as knowledge distillation61 and quantization.62 In
addition, while this work has focused on exploring the possi-
bility of applying BatteryBERT models to the area of battery
materials, its application can be generalized to a larger domain,
such as chemistry andmaterials science, using different models
(e.g. MatBERT42 and MatSciBERT43). As for model performance,
the text-mining tasks presented herein can still be improved by
using larger deep-learning models or a hybrid system of rule-
based and transformer-based algorithms, albeit with a sacri-
ce of its production efficiency. Lastly, BatteryDataExtractor
only processes the raw text data from literature, while the
information hidden behind the tables and gures cannot be
extracted and analyzed. Table-mining and gure-mining tech-
niques still need to be added in order to retrieve a full literature-
mining pipeline.

Data availability

The source code of BatteryDataExtractor can be found at https://
github.com/ShuHuang/batterydataextractor. The
documentation of the soware is available at https://
batterydataextractor.readthedocs.io/. The code used for ne-
tuning the BatteryBERT model on the token-classication task
Chem. Sci., 2022, 13, 11487–11495 | 11493
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can be found at https://github.com/ShuHuang/batterybert/
blob/ner/run_ner.py. The ne-tuned token-classication
models and evaluation data sets are available at https://
huggingface.co/batterydata.
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