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resolution of g,g-disubstituted
indole 2-carboxaldehydes via NHC-Lewis acid
cooperative catalysis for the synthesis of tetracyclic
3-lactones†

Kuruva Balanna,a Soumen Barik,a Sayan Shee,a Rajesh G. Gonnade b

and Akkattu T. Biju *a

The ubiquity of 3-lactones in various biologically active compounds inspired the development of efficient

and enantioselective routes to these target compounds. Described herein is the enantioselective

synthesis of indole-fused 3-lactones by the N-heterocyclic carbene (NHC)-Lewis acid cooperative

catalyzed dynamic kinetic resolution (DKR) of in situ generated g,g-disubstituted indole 2-

carboxaldehydes. The Bi(OTf)3-catalyzed Friedel–Crafts reaction of indole-2-carboxaldehyde with 2-

hydroxy phenyl p-quinone methides generates g,g-disubstituted indole 2-carboxaldehydes, which in the

presence of NHC and Bi(OTf)3 afforded the desired tetracyclic 3-lactones in up to 93% yield and >99 : 1

er. Moreover, preliminary studies on the mechanism of this formal [4 + 3] annulation are also provided.
Introduction

Functionalized 3-lactones are important structural motifs present
in various biologically active compounds and this core is
responsible for the avor and aroma in many natural products.1

For instance, the natural products rubellins A and B have the
benzo-fused 3-lactone moiety connected to the anthraquinone
unit, and they exhibit photodynamic activity.2 Moreover, 9-
dehydroxyeurotinone and 2-O-methyl-9-dehydoxyeurotinone
have a dibenzo-fused 3-lactone core, and they are useful due to
their antimicrobial and cytotoxic activity.3 Given the potential
applications of 3-lactone-containing compounds, the develop-
ment of rapid and facile routes for the enantioselective synthesis
of 3-lactone derivatives have received remarkable attention. The
Baeyer-Villiger oxidation of cyclohexanones constitutes one of the
traditional approaches to access 3-lactones.4 Moreover, transition
metal-catalyzed ring-expansion reactions and carbonylation
processes could also provide straightforward access to 3-
lactones.5 Herein, we report the enantioselective synthesis of
tetracyclic indole-fused 3-lactones by the N-heterocyclic carbene
(NHC)-Lewis acid catalyzed dynamic kinetic resolution (DKR) of
in situ generated g,g-disubstituted indole 2-carboxaldehydes.6,7
Scheme 1 NHC-catalyzed DKR strategies.
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Table 1 Optimization of the reaction conditionsa

entry Variation of the standard conditionsa Yield of 3ab (%) er of 3ac Yield of 3a0b (%) Yield of 3a00b (%)

1 None 68 95 : 5 <5 <5
2 5 Instead of 4 62 86 : 14 <5 <5
3 6 Instead of 4 11 86 : 14 <5 66
4 7 Instead of 4 19 81 : 19 <5 <5
5 K2CO3 instead of Cs2CO3 36 91 : 9 <5 25
6 KOt-Bu instead of Cs2CO3 <5 -Nd- <5 <5
7 DABCO instead of Cs2CO3 <5 -Nd- <5 <5
8 THF instead of toluene <5 -Nd- 71 <5
9 DME instead of toluene <5 -Nd- 67 <5
10 Mesitylene instead of toluene 22 91 : 9 <5 18
11 Sc(OTf)3 instead of Bi(OTf)3 52 92 : 8 <5 <5
12 CF3SO3H instead of Bi(OTf)3 60 91 : 9 <5 <5
13 10 mol% of 4 instead of 20 mol% 31 95 : 5 <5 48
14 1.0 equiv. of 8 instead of 2.0 equiv. 39 94 : 6 <5 28

a Standard conditions: 1a (0.12 mmol), 2a (0.168 mmol), 4 (20 mol%), Bi(OTf)3 (20 mol%), Cs2CO3 (60 mol%), 8 (2.0 equiv.), toluene (2.0 mL), 18 �C
and 36 h. b Yields of the column chromatography puried products are provided. c The er was established by HPLC analysis on a chiral stationary
phase.
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NHC-catalyzed DKR strategies are employed for the conver-
sion of racemic substrates to enantiomerically pure products.8

Generally, carbene-catalyzed DKR approaches are applicable to
racemic carbonyl compounds, where the enantioinduction takes
place at the a-carbon centre. For instance, Goodman and John-
son reported the DKR of b-halo a-ketoesters by utilizing the NHC-
catalyzed cross-benzoin reaction, where the reaction proceeds via
the generation of the nucleophilic Breslow intermediate A
(Scheme 1, eqn (1)).9–11 Moreover, Chi and co-workers demon-
strated the NHC-catalyzed DKR of a-alkyl a-aryl carboxylic esters
via the transesterication strategy, and the NHC- enolate B is the
key intermediate (eqn (2)).12 In all these cases, the a-carbon
center is involved in the DKR process, where the generated chiral
center is proximal to the reacting center (generation ofD from C),
and intriguingly, the synthesis of enantioenriched g-substituted
carboxylic esters from racemic starting materials via the DKR
process is not known.13 This will be interesting as the g-carbon
center will be remote from the reacting carbonyl center and
enantioinduction will be challenging (conversion of E to F). In
this context, we envisioned the NHC-catalyzed DKR of the g,g-
disubstituted aldehyde G derived from the unprotected indole-2-
carboxaldehyde,14 which can be generated in situ by the Lewis
11514 | Chem. Sci., 2022, 13, 11513–11518
acid-catalyzed Friedel–Cras reaction of indole 2-aldehyde 1a
with the o-hydroxyphenyl-substituted p-quinonemethide 2a. This
formal [4 + 3] annulation reaction afforded indole-fused 3-lactone
3a in good yields and selectivities. The optimal Lewis acid was
Bi(OTf)3, which plays dual roles: (a) in catalyzing the initial
Friedel–Cras reaction generating G, and (b) then the involve-
ment in the DKR process for the esterication reaction in coop-
eration with NHCs.15 Intriguingly, although NHC-catalyzed DKR
strategies are known for the enantioselective synthesis of b-
lactones, g-lactones and d-lactones, the related DKR strategies for
3-lactones are unknown. It may be noted in this context that
NHC-catalyzed synthesis of fused 3-lactones by the [4 + 3] annu-
lation of o-quinone methides with enal-derived homoenolates
was uncovered independently by Ye’s16 and Scheidt’s groups.17

Moreover, a related NHC-homoenolate route for the synthesis of
spirooxindole 3-lactones (without involving the DKR process) is
demonstrated by Li’s18a and Enders’ groups.18b
Results and discussion

Driven by the idea of inducing stereocontrol at a remote posi-
tion using the DKR strategy, the present study was initiated by
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Scheme 2 a Reaction conditions: 1 (0.25mmol), 2 (1.4 equiv.), 4 (20mol%), Bi(OTf)3 (20mol%), Cs2CO3 (60mol%), 8 (2.0 equiv.), toluene (4.0mL),
18 �C and 36 h. Given are isolated yields of the column chromatography purified products. The er was established by HPLC analysis on a chiral
stationary phase. b The yield and er for a 1.0 mmol scale reaction. c The reaction performed at 10 �C for 48 h.

Scheme 3 Control experiments.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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treating indole 2-carboxaldehyde 1a with the p-quinone
methide 2a in the presence of NHC generated from the chiral
triazolium salt 4 using Cs2CO3 as the base under oxidative
conditions using the bisquinone 8. Interestingly, under these
conditions, the desired indole-fused 3-lactone 3a was formed in
68% yield and a 95 : 5 enantiomeric ratio (er) (Table 1, entry 1).
The product 3a was formed by the initial Friedel–Cras reaction
of 1a with 2a catalyzed by Bi(OTf)3 (generating in situ 3a''), fol-
lowed by the NHC/Lewis acid-catalyzed DKR via a stereo-
selective esterication reaction. Notably, the ester 3a0 (formed
by the esterication of 1a with the phenol moiety of 2a),19 and
the Friedel–Cras product 3a00 were not isolated under these
conditions. Moreover, compared to the carbene formed from 4,
other chiral triazolium salts 5–7 provided less yield and selec-
tivity of 3a (entries 2–4). The screening of other bases and
solvents revealed that Cs2CO3 is the optimal base and toluene is
Chem. Sci., 2022, 13, 11513–11518 | 11515
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Scheme 4 Role of a Lewis acid in the DKR process.

Scheme 5 Proposed mechanism of the reaction.
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the best solvent for this transformation (entries 5–10). The use
of Sc(OTf)3 as the Lewis acid and CF3SO3H as the Brønsted acid
for initiating the Friedel–Cras reaction was also not efficient
(entries 11 and 12). In addition, performing the reaction with
10 mol% of 4 or using 1.0 equiv. of 8 resulted in an incomplete
reaction with the isolation of the Friedel–Cras adduct 3a00

maintaining high selectivity (entries 13,14). Hence, entry 1 was
selected as the best condition for the substrate scope analysis.20

Having the optimized reaction conditions in hand, the scope
and limitations of the present NHC-catalyzed DKR has been
examined. First, the variation of the indole 2-carboxaldehyde
has been studied. The unsubstituted parent aldehyde worked
well and 4-uoro substituted aldehyde furnished the tetracyclic
3-lactone 3b in 93% yield and 96 : 4 er (Scheme 2). The forma-
tion of 3a in 72% yield and 95 : 5 er on a 1.0 mmol scale indi-
cates that the present DKR process is scalable and practical. A
variety of electronically different substituents at the 5-position
of indole 2-carboxaldehyde was well tolerated under the opti-
mized conditions and the corresponding 3-lactones were
formed in good yields and selectivities (3c–3j). In the case of the
methyl derivative 3d, the structure and the absolute stereo-
chemistry of the chiral center were conrmed using X-ray
analysis of the crystals.21 Moreover, substrates bearing
different groups at the 6-position of indole 2-carboxaldehye
underwent a smooth NHC-catalyzed annulation reaction to
afford the desired products in good yields and er values (3k–3r).
In addition, the reaction using 7-methoxy indole 2-carbox-
aldehyde furnished the product 3s in 61% yield and 96 : 4 er.
Furthermore, disubstituted indole -aldehydes also provided
good yield of the target product thus expanding the scope of this
annulation (3t and 3u).

Next, the variation in the o-hydroxyphenyl-substituted p-
quinone methide moiety was studied. The p-quinone methides
having –Br, –Cl, Ph and –OMe groups at the 5-position are well
tolerated under the present conditions and the desired annu-
lated products are formed in reasonable yields and selectivities
(3v–3y). Moreover, –Me and –OMe groups at the 4- and 3-posi-
tion of 2 did not affect the reaction outcome and the target 3-
lactones are formed in good yields and er values (3z and 3aa).
11516 | Chem. Sci., 2022, 13, 11513–11518
To get insight into the mechanism of the reaction, a few
mechanistic experiments were performed. When the reaction of
1a was performed with 2a in the absence of Bi(OTf)3, the reac-
tion furnished the ester product 3a0 in 87% yield, and 3awas not
formed under these conditions (Scheme 3, eqn (4)). Notably,
related esterication reactions catalyzed by NHCs are reported
by Studer and co-workers.19 Moreover, treatment of 1awith 2a in
the absence of NHC resulted in the formation of the Friedel–
Cras adduct 3a00 in 89% yield (eqn (5)).

The lack of the desired product 3a formation in the absence
of either Bi(OTf)3 or NHC indicates the role of these two cata-
lysts for the direct and enantioselective synthesis of the 3-
lactone 3a. To get further insight into the role of Bi(OTf)3 in the
DKR process, the Friedel–Cras alkylation product 3a00 was
treated with NHC generated from 4 under oxidative conditions
in the absence of Bi(OTf)3. This reaction afforded 3a in 65%
yield and 79 : 21 er (Scheme 4, eqn (6)). Interestingly, when the
same reaction was conducted in the presence of Bi(OTf)3 the
product 3awas formed in 62% yield and an improved er of 93 : 7
shedding light on the role of a Lewis acid in the DKR process
(eqn (7)).22 It is reasonable to assume that the Bi(III) Lewis acid is
involved in coordination with the NHC-bound dienolate and the
phenolic –OH moiety for the facile dienolate protonation and
intramolecular acylation.23,24

Mechanistically, in the presence of Lewis acidic Bi(OTf)3,
indole 2-carboxaldehyde 1a25 adds to the p-quinone methide 2a
generating in situ the racemic g,g-disubstituted indole 2-car-
boxaldehyde 3a00 through an intermolecular Friedel–Cras
alkylation reaction (Scheme 5). Under oxidative conditions, the
© 2022 The Author(s). Published by the Royal Society of Chemistry
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addition of NHC to the aldehyde 3a00 could generate the dia-
stereomeric NHC-bound acylazoliums I and III.26 It is reason-
able to assume that the NHC acylazolium I could not undergo
intramolecular acylation due to the presence of a bulky chiral
indanone core of the catalyst. Hence, the formation of (R)-3a is
not feasible. On the other hand, the NHC acylazolium III
undergoes facile intramolecular acylation to afford the desired
product (S)-3a as the aminoindanol and the bulky 2,6-di-tert-
butyl phenolic moieties are on the opposite side. The acylazo-
lium I under basic conditions could form the NHC-dienolate
intermediate II,6j,27 which could undergo enantioselective
protonation to generate the intermediate III, which can further
undergo acylation to form the product (S)-3a. During the re-
protonation of NHC-bound dienolate intermediate II, Bi(OTf)3
is likely involved in the coordination with the dienolate and
–OH moieties to facilitate protonation and then esterication.

In conclusion, we have presented the NHC-Lewis acid
cooperative catalyzed DKR for the enantioselective synthesis of
tetracyclic indole-fused 3-lactones, a formal [4 + 3] annulation.
The transiently generated g,g-disubstituted indole 2-carbox-
aldehydes from indole-2-carboxaldehyde and 2-hydroxy phenyl
p-quinone methides using Bi(OTf)3 catalysis underwent an
efficient DKR process, where the NHC-bound dienolates are the
key intermediates. In the presence of NHC and Bi(OTf)3, facile 3-
lactonization takes place with enantioinduction at the g-posi-
tion. The tetracyclic 3-lactones are formed in up to 93% yield
and >99 : 1 er. The stereoinduction at the remote g-carbon, mild
reaction conditions, and in situ generation of the racemic
substrate for DKR are the notable features of the present
annulation reaction.
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