
Chemical
Science

EDGE ARTICLE

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

0 
N

gu
bù

e 
20

21
. D

ow
nl

oa
de

d 
on

 3
/1

1/
20

25
 2

2:
20

:0
0.

 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
View Journal  | View Issue
Beyond generati
aDepartment of Computer Science, Univers

aspuru.com
bDepartment of Chemistry, University of Tor
cVector Institute for Articial Intelligence, To
dLebovic Fellow, Canadian Institute for Ad

Ave, Toronto, Ontario M5G, Canada

† Electronic supplementary informa
10.1039/d1sc00231g

Cite this: Chem. Sci., 2021, 12, 7079

All publication charges for this article
have been paid for by the Royal Society
of Chemistry

Received 12th January 2021
Accepted 12th April 2021

DOI: 10.1039/d1sc00231g

rsc.li/chemical-science

© 2021 The Author(s). Published by
ve models: superfast traversal,
optimization, novelty, exploration and discovery
(STONED) algorithm for molecules using SELFIES†
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Gabriel dos Passos Gomes ab and Alán Aspuru-Guzik *abcd

Inverse design allows the generation of molecules with desirable physical quantities using property

optimization. Deep generative models have recently been applied to tackle inverse design, as they

possess the ability to optimize molecular properties directly through structure modification using

gradients. While the ability to carry out direct property optimizations is promising, the use of

generative deep learning models to solve practical problems requires large amounts of data and is

very time-consuming. In this work, we propose STONED – a simple and efficient algorithm to

perform interpolation and exploration in the chemical space, comparable to deep generative models.

STONED bypasses the need for large amounts of data and training times by using string

modifications in the SELFIES molecular representation. First, we achieve non-trivial performance on

typical benchmarks for generative models without any training. Additionally, we demonstrate

applications in high-throughput virtual screening for the design of drugs, photovoltaics, and the

construction of chemical paths, allowing for both property and structure-based interpolation in the

chemical space. Overall, we anticipate our results to be a stepping stone for developing more

sophisticated inverse design models and benchmarking tools, ultimately helping generative models

achieve wider adoption.
I. Introduction

Generative models are a class of techniques with applications in
inverse molecular design.1 Among them, variational autoen-
coders (VAEs),2,3 generative adversarial networks (GANs),4,5

recurrent neural networks (RNNs),6,7 deep reinforcement
learning (DRL)8,9 and genetic algorithms (GAs)10–17 have been
applied to the design of molecules. They can be roughly divided
into models that aspire to produce only sensible molecules,
either via learned or imposed structure generation procedures,
and models that produce any structure satisfying basic valence
rules. Notably, for practical purposes, the latter class of models
requires additional lters to remove unstable, reactive or toxic
moieties before further evaluation. Importantly, the choice of
molecular representation employed in these approaches
impacts performance dramatically. Deep generative models
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vanced Research (CIFAR), 661 University
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the Royal Society of Chemistry
trained on molecular representations form low dimensional
latent spaces enabling the sampling of unseen molecules. This
allows for exploration in the chemical space and interpolation
by chemical path formation3 using geometric operations in the
continuous latent spaces. In contrast to typical implementa-
tions of genetic algorithms with the SMILES string representa-
tion,18,19 a unique aspect of these deep learning techniques is
that the generation of new molecules does not require the
design of hand-craed rules. However, they can require access
to large datasets, either labeled or unlabeled depending on the
specic task at hand, and expensive computational resources to
offset large training times. Furthermore, with fragile represen-
tations such as SMILES, large areas of a latent space can
correspond to invalid molecules.3 Alternatively, deep generative
models using molecular graphs represented as adjacency
matrices have also been demonstrated with applications in drug
design.20,21 Recently, the development and application of
a 100% valid strings representation – SELFIES22 – has been
demonstrated for inverse design.23 Compared to SMILES and
adjacency matrices, the use of SELFIES in generative models
overcomes the problem of generating invalid molecules.

In this work, using SELFIES as a robust molecular repre-
sentation, we propose an efficient set of algorithms (STONED)
to perform exploration and interpolation in the chemical
space (Section II A). These tasks are commonly addressable by
Chem. Sci., 2021, 12, 7079–7090 | 7079
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expensive deep generative models or stochastic optimization
approaches like evolutionary methods.24 Our algorithm avoids
the need for extensive training times, large datasets, and
hand-craed rules for obtaining novel molecules, and allows
to interpolate deterministically between molecules. We ach-
ieve this via string manipulations of SELFIES and demonstrate
the ability to form local chemical subspaces (Section II B),
allowing for local optimization, and obtain chemical paths
(Section II C), enabling interpolation between structures.
Additionally, we demonstrate applications in designing
molecules for material science (Section II D) and drug devel-
opment (Section II C 2). On established benchmarks, our
algorithm achieves non-trivial results despite not using any
sophisticated optimization engines and is comparable in its
capabilities to the state of the art in generative modeling. The
ease of obtaining molecules for local optimization and inter-
polation via chemical paths allows for our methods to be used
in high-throughput virtual screening for materials science,25

catalysis,26 and drug design.27 Ultimately, we anticipate that
our results will stimulate more powerful models, more
meaningful benchmarks, and more widespread use of gener-
ative models in general.
Fig. 1 Illustration of string manipulations within STONED to form local ch
medianmolecules on the chemical path between two structures (b, see S
than two molecules (c, see Section II D).

7080 | Chem. Sci., 2021, 12, 7079–7090
II. Results and discussion
A. Algorithmic overview

In this work, we show that modications within the SELFIES
molecular representation are a powerful tool for performing
structural and property-based changes to molecules. Akin to
deep generative models, these changes can be utilized for
forming local chemical subspaces of molecules (Fig. 1(a)),
forming chemical paths between knownmolecules (Fig. 1(b and
c)) and obtaining a molecule representative of multiple struc-
tures (median molecules – Fig. 1(b)). For that purpose, we
introduce STONED, a set of algorithms where a single step of
molecular generation is carried out, that are optionally based on
initial seed structures. Each of these algorithms makes use of
incremental changes within the SELFIES representation of
a molecule. Currently, we make use of four important tech-
niques within STONED. Firstly, in SELFIES, random character
changes always correspond to valid molecules. Unlike other
molecular representations, this allows us to perform random
changes to molecules without subsequent validity checks.
Moreover, we demonstrate that the position of the random
character changes can be used as hyperparameter to switch
emical subspaces (a, see Section II B) for a given structure, discovering
ection II C) and formation of generalized chemical paths betweenmore

© 2021 The Author(s). Published by the Royal Society of Chemistry
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between exploration and exploitation in the molecules gener-
ated. Secondly, every molecule can be represented with multiple
SMILES strings, and multiple corresponding SELFIES. Since
a single SELFIES has a limited number of possible character
changes, we enhance the diversity of the generated structures by
generating and utilizing multiple representations for the same
molecule. Without the use of reordering before making
changes, the number of generated structures is severely limited.
Thirdly, we demonstrate that interpolations between an arbi-
trary number of reference molecules can be performed deter-
ministically by matching SELFIES characters at equivalent
positions between the reference strings. Lastly, we use the effi-
ciency of ngerprint comparisons as a tool to enforce structural
similarity because edit distances within SELFIES do not reect
it. With these techniques, we can form local chemical
subspaces, discover median molecules and form chemical
paths for structural interpolation.
B. Formation of local chemical spaces

The ability to generate the structural neighborhood of known
molecules allows for local optimization. In drug discovery,
candidate libraries are typically designed based on similarity to
known active compounds aiming for further property
improvements.28,29 Usually, the formation of these local chem-
ical subspaces is achieved with predened rules.24,30,31 However,
the design of domain-specic rules for structure modication is
time-consuming, non-trivial, and application-dependent.
Hence, systematic methods for forming local chemical
subspaces with minimal bias that can be used for any class of
molecules are important. Additionally, on-the-y structure
generation has recently been considered as a benchmark to
evaluate generative molecular designmodels in GuacaMol32 and
MOSES.33 In these benchmarks, model quality is determined by
Table 1 Number and percentage of unique molecules obtained with
structures. The molecules in each experiment were generated from 250 0
celecoxib, we also formed the local chemical space with a scaffold con

Starting structure (method) Fingerprint

Aripirazole (SELFIES, random) ECFP4
Albuterol (SELFIES, random) FCFP4
Mestranol (SELFIES, random) AP
Celecoxib (SELFIES, random) ECFP4
Celecoxib (SELFIES, terminal 10%) ECFP4
Celecoxib (SELFIES, central 10%) ECFP4
Celecoxib (SELFIES, initial 10%) ECFP4
Celecoxib (SMILES, random) ECFP4
Celecoxib (SMILES, terminal 10%) ECFP4
Celecoxib (SMILES, central 10%) ECFP4
Celecoxib (SMILES, initial 10%) ECFP4
Celecoxib (DeepSMILES, random) ECFP4
Celecoxib (DeepSMILES, terminal 10%) ECFP4
Celecoxib (DeepSMILES, central 10%) ECFP4
Celecoxib (DeepSMILES, initial 10%) ECFP4
Celecoxib (SELFIES, scaffold constraint) ECFP4
Celecoxib (CReM, ChEMBL: SCScore # 2.5) ECFP4

© 2021 The Author(s). Published by the Royal Society of Chemistry
the number of unique molecules generated within predened
ngerprint similarity thresholds. Notably, for deep generative
models, the generation of unique molecules close to a target is
biased by the resemblance between molecules of an indepen-
dent training dataset and the target structure.

We started this work by performing point mutations of the
molecules aripiprazole, albuterol, and mestranol32 in the
SELFIES representation to generate local chemical subspaces. A
point mutation in the SELFIES representation corresponds to
a single character addition, deletion or replacement. As delin-
eated in Table 1, STONED is able to generate vast local chemical
subspaces requiring only one data point as a seed. Additionally,
in comparison to the state of the art in deep generative
modeling for molecular design, our algorithm is an order of
magnitude faster. Notably, for each of these experiments, the
respective ngerprints suggested in the analogous GuacaMol
benchmarks were used. Fig. 2 illustrates the ability of our
algorithm to generate diverse structures in the neighborhood of
the known drug celecoxib.34 As expected, we observe that the
fraction of unique molecules obtained decreases with more
stringent structure-based ngerprint similarity requirements.
Importantly, this is a general feature of the SELFIES represen-
tation. As depicted in Fig. S2 (le),† mutating molecules
randomly in the SELFIES representation rarely preserves high
molecular similarity. Additionally, molecular similarity to the
initial structure, on average, decreases with the number of
mutations performed which is intuitive.

While the success rate of mutations leading to structurally
similar molecules is relatively low (Table 1), our approach is
extremely efficient, with the entire experiment running in just
a few minutes on an ordinary laptop at the time of writing (Intel
i7-8750H CPU, 2.20 GHz). In particular, the most time-
consuming benchmark in Table 1 was the formation of the
subspace of aripiprazole, completing in 500 seconds. The most
in different fingerprint-based similarity thresholds (d) of the starting
00 random string mutations of the starting structures. Additionally, for

straint

Number of molecules (and percentage)

d > 0.75 d > 0.60 d > 0.40

513 (0.25%) 4206 (2.15%) 34 416 (17.66%)
587 (0.32%) 4156 (2.33%) 16 977 (9.35%)
478 (0.22%) 4079 (1.90%) 45 594 (21.66%)
198 (0.10%) 1925 (1.00%) 18 045 (9.44%)
864 (2.02%) 9407 (21.99%) 34 187 (79.91%)
111 (0.08%) 1767 (1.32%) 15 348 (11.45%)
368 (0.53%) 7345 (10.53%) 34 702 (49.74%)
122 (18.43%) 515 (77.49%) 662 (100.00%)
90 (20.79%) 368 (84.99%) 433 (100.00%)
114 (22.18%) 419 (81.52%) 514 (100.00%)
122 (19.71%) 490 (79.16%) 619 (100.00%)
132 (4.43%) 953 (31.99%) 2793 (93.76%)
106 (9.73%) 513 (47.11%) 1083 (99.45%)
53 (6.54%) 162 (19.98%) 658 (81.13%)
105 (9.28%) 609 (53.80%) 1106 (97.70%)
354 (0.44%) 6311 (7.79%) 53 479 (66.07%)
239 (0.58%) 5547 (13.47%) 14 887 (36.14%)

Chem. Sci., 2021, 12, 7079–7090 | 7081
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Fig. 2 Systematic local chemical space exploration of celecoxib usingmutations of different SELFIES representations. The similarity is calculated
using the Tanimoto distance of the ECFP4 fingerprint between celecoxib and the generated structures.
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expensive step in this experiment involved performing multiple
SELFIES mutations and subsequently converting all mutated
strings into SMILES, taking 400 seconds. Importantly, this step
can be made more efficient by conducting mutations on
different strings using parallel workers. Hence, this algorithm
possesses extensive parallelizability. For comparison, using the
same setup, we also formed the local chemical subspace of
celecoxib using either SMILES or DeepSMILES. For SMILES,
merely 0.30% of the mutated structures corresponded to valid
molecules. With DeepSMILES, merely 1.44% of the mutated
structures were valid. In addition, we observed that random
mutations within SMILES and DeepSMILES led to lower struc-
tural diversity compared to SELFIES (see Table 1). Additionally,
we also formed the chemical subspace of celecoxib while
preserving a pre-selected scaffold (see celecoxib (SELFIES,
scaffold constraint) in Table 1). Discarding all mutated strings
that do not contain the scaffold, i.e., keeping only 2.8% of all
mutated strings, STONED readily proposed a large number of
structures in the neighborhood of celecoxib. Overall, the speed
and scalability of our methods suggest that it can be readily
applied to extend datasets used in machine learning for
creating more robust generalizable models.

Importantly, we also found that a general strategy for
preserving molecular similarity during random SELFIES muta-
tions of the starting structure is to restrict the location of the
SELFIES changes. Restricting the mutations to either the initial
or the terminal characters yields mutated structures that are
more similar to the initial structure than when the mutation
position is either chosen randomly or restricted to the middle
characters (see Table 1 and Fig. S3;† initial, central or terminal
10%). It should be emphasized that this is not just a curious
7082 | Chem. Sci., 2021, 12, 7079–7090
nding but can be used systematically to choose between
exploration and exploitation for the structural space generated
using STONED. In addition, it can be employed in conjunction
with scaffold constraints as restricting the mutations to the
terminal 10% of the SELFIES also increases the probability to
retain scaffolds. We repeated the scaffold constraint experiment
from above but restricted the mutations to the terminal 10%
and found that 36.3% of all mutated strings retained the scaf-
fold, which corresponds to a more than 10-fold increase in the
scaffold retention rate. Notably, trying to use the same type of
character mutation restriction for SMILES or DeepSMILES does
not provide the same kind of tunability between exploitation
and exploration of the generated structures. As additional
comparison to alternative methods, we also generated the local
chemical subspace of celecoxib using the recently developed
expert system CReM, a fragment-based approach.35 Taking
fragments and mutation rules from a subset of ChEMBL36,37

with an SCScore # 2.5, CReM generates signicantly more
structures in the structural neighborhood than fully random
SELFIES mutations but less than when SELFIES mutations are
restricted to the terminal characters. This shows that STONED
is comparable in performance to expert systems like CReM.

Notably, in the experiments described above, we performed
mutations solely on the starting structure. A natural extension is
to repeat the procedure on all distinct neighbours, i.e., mole-
cules produced by point mutations from the initial structure,
thereby extending the subspace search signicantly. To
demonstrate the power of this approach, starting from the
randomly mutated structures of celecoxib, we repeated the
randommutations on all unique molecules obtained in the rst
step. Consequently, we generated more than 17 million unique
© 2021 The Author(s). Published by the Royal Society of Chemistry
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molecules, 120 thousand of which have a similarity greater than
0.4 with respect to celecoxib (see Fig. S4†) showing that the
structural coverage of the local subspace can be increased
immensely by including structural next nearest neighbors of the
initial seed molecule.

Furthermore, we wanted to demonstrate the full potential of
the chemical subspace exploration by replacing the ECFP4
ngerprint similarity with 3D ngerprints to form geometry-
based chemical subspaces. To do that, we generated
conformers of celecoxib and 2350 of its mutants with RDKit
using the implemented conformer ensemble routine. The
lowest-energy conformer was selected and the 3D similarity
between the structures of celecoxib and its mutants was esti-
mated using the E3FP similarity metric.38 Consequently, we
found 206 structures with an E3FP similarity larger than 0.2, 31
of which were even larger than 0.3. Selected structures are
depicted in Fig. 3 with an overlay of the corresponding
conformers with the structure of celecoxib. This shows that
generating the 3D similarity space with STONED and E3FP
similarity is straightforward allowing it to be applied to
structure-based inverse design. Notably, we hypothesize that
the 2D or 3D structure-based ngerprints can also be replaced
with efficient property-based molecular descriptors39–41 for
systematic property space exploration in an analogous way.

C. Properties along chemical paths

1. Measuring joint molecular similarity. A median mole-
cule of a given set of reference molecules is a molecule that
resembles all the reference molecules simultaneously based on
a selected similarity metric.42 Recently, the generation of
median molecules has been proposed as a benchmarking
objective within GuacaMol.32,43 In this benchmark, termed the
median molecule discovery objective, the goal is to maximize
the similarity to a predened set of structures simultaneously,
i.e., the joint molecular similarity. The problem can be viewed
as identifying the largest fragments that are identical in a set of
Fig. 3 Systematic local exploration of the 3D similarity space of celecox

© 2021 The Author(s). Published by the Royal Society of Chemistry
molecules. Notably, when the mutual similarity between the
reference structures is small, the generation of median mole-
cules can be challenging leading to low joint similarity metrics.

Importantly, the similarity of proposed median structures to
the references can be gauged via structure-based ngerprint
similarity measures. In GuacaMol, a median molecule (i.e., m)
of two known structures (i.e., m0, m

00
) is assessed based on the

geometric mean of the respective ngerprint similarities to the
two reference structures. The higher the geometric mean, the
better the median molecule. However, we observe that maxi-
mizing the geometric mean of ngerprint similarities does not
capture joint molecular similarity satisfactorily. The metric can
return large values despite possessing high similarity only to
one structure (see Section S2†). Therefore, we propose to rede-
ne joint similarity F(m) for an arbitrary number of reference
moleculesM¼ {m1,m2,.}; n¼ jMj, which is discussed in detail
in the ESI (Section S2),† as follows, to penalize higher similar-
ities to only a subset of the reference molecules more severely:

FðmÞ ¼ 1

n

Xn

i¼1

simðmi;mÞ � ½maxiðsimðmi;mÞÞ

�miniðsimðmi;mÞÞ� (1)

In the subsequent sections, we investigate the behaviour of
this joint molecular similarity along chemical paths between
molecules which inadvertently leads to the generation of
median molecules.

2. Interpolation via chemical path formation. Chemical
paths are series of molecules where each successive member is
increasingly similar to the target.44 Motivated by the rediscovery
benchmark objective in GuacaMol,32 which can be interpreted
as the formation of chemical paths between the seed structures
and the desired target molecule, we explored the possibility to
use the robustness of SELFIES for deterministic molecular
interpolation. Within the SELFIES universe, i.e., the set of all
ib.

Chem. Sci., 2021, 12, 7079–7090 | 7083

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d1sc00231g


Fig. 4 (a) log P and QED values of molecules encountered along
chemical paths between tadalafil and sildenafil. (b) Ligand binding
affinities of molecules encountered along chemical paths between
dihydroergotamine and prinomastat. For both subfigures, the corre-
sponding reference properties are indicated by black lines.
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strings composed of SELFIE characters, the notion of path
formation has a unique formulation. Using character replace-
ments, deletions, and additions as possible mutations, for any
given pair of SELFIES representing two distinct molecules,
a nite number of modications exist that interconvert them.
This interconversion can be performed deterministically by
simply comparing the SELFIES characters at equivalent posi-
tions in the two strings and successively changing the charac-
ters of the initial molecule to the characters of the target
molecule. We dene every successive molecule encountered in
this transformation as within a path. Every one of thesemutated
SELFIES corresponds to a valid molecule. While this deter-
ministic interconversion can in principle be achieved with any
string-based molecular representation like SMILES or Deep-
SMILES,45 most of these modications will very likely lead to the
formation of syntactically or semantically invalid molecules.22

Hence, there will be specic islands of valid molecules
embedded within a sea of invalid strings. For instance, between
the SMILES strings CCC1CCC1CCC and CCCCCCCCC, no
single mutation that corresponds to an increase in Levenshtein
similarity forms valid molecules leading to a string without
a valid chemical structure in the corresponding path. Accord-
ingly, previous approaches based on string representations like
SMILESmade use of stochastic structural interpolation between
structures using evolutionary algorithms24 or performed
geometric interpolation in latent spaces of deep generative
models.3

Importantly, while a monotonically increasing ngerprint
similarity score is not observed along paths generated deter-
ministically between two SELFIES, one can extract chemical
paths by requiring ngerprint similarities to increase and
removing all structures that lead to similarity drops. Compared
to generating chemical paths using SELFIES stochastically, by
making use of evolutionary algorithms, our deterministic
approach leads to a speedup of more than one order of
magnitude. To avoid holes in the beginning of the chemical
paths, we imposed the requirement for increasing ngerprint
similarities only aer the rst point mutation of the starting
structure. Because of the speed and parallelizability of this
chemical path generation method, motivated by the idea that
similarity in structure can correspond to similarity in proper-
ties, we looked into properties of molecules along chemical
paths. As an initial test, we considered the water–octanol
partition coefficient (log P)46 and the quantitative estimate of
drug-likeness (QED)47 in paths between the known drugs tada-
lal and sildenal (Fig. 4(a)), as estimated using RDKit.48 One of
these chemical paths is shown in Fig. 5 (top), and the similar-
ities to the starting and target structures along the path as well
as the comparison of the corresponding geometric mean joint
similarities and our newly dened joint similarities are illus-
trated in Fig. S6 (top).† These results demonstrate that the
redened joint similarity is more reliable for indicating mole-
cules that are similar to several reference structures
simultaneously.

Moreover, we analyzed the binding affinity estimated via
docking49 in chemical paths between dihydroergotamine and
prinomastat as a more challenging type of property to optimize
7084 | Chem. Sci., 2021, 12, 7079–7090
(Fig. 4(b)). Dihydroergotamine and prinomastat have been dis-
cussed in the literature as potential inhibitors for the protein
structures of serotonin (5-HT1B)50 and P450 2D6 (CYP2D6).51

The 5-HT1B receptor is a target for antimigraine drugs such as
ergotamine and dihydroergotamine.50 P450 2D6, on the other
hand, contributes to the metabolism and elimination of more
than 15% of the drugs used in clinical practice. Among indi-
viduals, considerable variations exist in the efficacy and amount
of CYP2D6 enzyme production. As a result, a clinical drug dose
may need to be altered to account for the metabolization speed
of CYP2D6.52 Prinomastat, as an inhibitor, decreases enzyme
production, thereby allowing increased efficacy of certain drugs.
Our goal in this experiment is to nd molecules encountered
along the paths between dihydroergotamine and prinomastat
that can simultaneously bind (i.e., possess negative binding
affinities large in magnitude) to both proteins (see Fig. 4(b)).
One selected chemical path is depicted in Fig. 5 (bottom).
© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 (Top) Example of molecules along a chemical path between tadalafil and sildenafil, with their corresponding log P and QED scores.
(Bottom) Example of a chemical path between dihydroergotamine (binder for 5-HT1B) and prinomastat (binder for CYP2D6). Docking scores for
the intermediate structures on both proteins and their joint similarity to the reference structures are provided in the diagram to the right.
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Moreover, we also compared both the similarities to the refer-
encemolecules along the path and our redened joint similarity
metric to the corresponding geometric mean joint similarities
(see Fig. S6 (bottom)†). These diagrams show again that the
joint similarity introduced in this work avoids molecules that
are similar to only one of the reference structures. For the
selected path, the docked molecules are depicted in Fig. S7.†
Notably, there are signicant structural jumps along these
chemical paths, i.e., successive molecules show relatively large
structure changes. They largely stem from the condition that
every molecule along a chemical path needs to increase in
similarity to the target. Accordingly, molecules along the full
path that led to a decrease in similarity to the target aer the
rst mutation were removed causing these large changes in the
remaining molecules. Notably, some of the molecules obtained
have unstable functional groups or would tautomerize in solu-
tion to a different structure. To improve both their stability and
synthetic feasibility, rules based on domain knowledge can be
implemented to lter out structures that are infeasible.

Importantly, this experiment demonstrates the ability to
perform efficient structural interpolation between molecules
without the need to form continuous representations within
deep generative models. Our simple algorithm for obtaining
chemical paths possesses considerable potential for paralleli-
zation and does not need a large number of data points as
input. Particularly, Cieplinski et al.53 noted that with realistic
training set sizes (i.e., consisting of a few thousand points),
deep generative models have difficulty optimizing docking
© 2021 The Author(s). Published by the Royal Society of Chemistry
scores. In contrast, as illustrated in Fig. 4(b), our approach to
forming chemical paths between two known ligands yields
several structures with non-trivial binding affinities to both
proteins without any optimization routine.

D. Median molecules for photovoltaics

As pointed out previously, forming chemical paths between two
molecules inadvertently leads to the generation of median
molecules. Next, we generalized the concept of a chemical path
to potentially having more than two reference molecules (see
Fig. 1(c) and Section S3†). As an application example, we
considered the organic photovoltaic dataset from the Harvard
Clean Energy (HCE) project,31 and identied 100 sets of three
molecules (referred to as triplets) so that the rst has a high
lowest unoccupied molecular orbital (LUMO) energy, the
second a high dipole moment, and the third a high energy
difference between the highest occupied molecular orbital
(HOMO) and LUMO energies (HOMO–LUMO gap), while having
low values for the respective other two properties. This choice of
properties reects potential design objectives for organic
photovoltaics.54 HOMO–LUMO gap and LUMO energies deter-
mine the energy of light absorption and acceptor ability,
respectively, while dipole moment can be considered a crude
proxy for intermolecular interaction strength. We simulated
these properties using the semiempirical GFN2-xTB quantum
chemistry method55 (see details in the Methods Section†).

We compared the ability of the obtained median molecules
to resemble the triplet references in structure (Fig. 6 (le)) and
Chem. Sci., 2021, 12, 7079–7090 | 7085
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Fig. 6 Multi-objective property optimization of potential molecules of interest for photovoltaics. Structural (left) and property similarity (right) of
generated median molecules compared to specific sets of three molecules taken from the Harvard Clean Energy (HCE) database. Bar plots for
the mean, and error bars for the standard deviation of the mean (2 standard deviations) are shown for the joint similarity and the normalized
property distance of the 100 median structures with highest joint similarities to the references, with (Filtered Median) and without (Unfiltered
Median) a bridgehead atom filter. They are compared to Random SELFIES and tomolecules from the HCE database (RandomHCE and Best HCE).
The obtained median molecules are very close to Best HCE in joint similarity and slightly better in the properties.

Chemical Science Edge Article

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

0 
N

gu
bù

e 
20

21
. D

ow
nl

oa
de

d 
on

 3
/1

1/
20

25
 2

2:
20

:0
0.

 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
property (Fig. 6 (right)). A selection of the generated median
molecules is shown in Fig. S9.†Notably, higher joint similarities
indicate that the median molecules resemble the triplets more
closely in structure. However, low values of the normalized
property distance indicate that the median molecules have
properties closer to the respective reference structures. For each
triplet identied from the HCE database, we used the 100
median molecules with the highest joint similarities to the
reference structures from chemical paths between the three
reference structures (Unltered Medians). We observed that
many of these median molecules possessed bridgehead atoms
with double bonds, a very unstable structural feature.56 To
remedy this problem, we added a simple lter discarding
molecules with bridgehead atoms in general (Filtered Medians).

In Fig. 6, Random HCE refers to sampling 100 random
structures from the HCE database for each triplet, while Best
HCE refers to the 100 molecules with the highest joint simi-
larities to the reference structures available within the database.
Importantly, we found that the median molecules are signi-
cantly closer in both structure and target properties to the
respective triplets compared to Random HCE. In addition, they
are also closer to the respective triplets in the investigated
properties compared to Best HCE showing that generating
median molecules can be an effective strategy for performing
multi-objective property optimization (see Fig. S8 and Table S3†
for detailed statistics). Importantly, this task is a complicated
multi-objective optimization in a chemical subspace tailored for
a very specic application. Our method is able to produce
molecules that are similar in structure to three molecules
simultaneously. In that regard, our method produces structures
similar in both structural similarity and property compared to
a database of molecules obtained using a building block
approach based on expert knowledge. Hence, our results are
very promising for fully automated exploration of chemical
subspaces based on a few reference structures without dening
building blocks and rules to construct molecules.
7086 | Chem. Sci., 2021, 12, 7079–7090
Expert rules-based systems can yield median molecules as
well,35,42,57,58 but their use can be application-dependent. For
example, a potential algorithm could disassemble the reference
structures into fragments by breaking rotatable bonds and then
recombine the fragments in a building block approach, akin to
the design of CReM.35 However, this technique would not be
generalizable to molecules without rotatable bonds, such as
fused polyaromatics, and more sophisticated algorithms would
be required. Our method differs in that it requires no expert
knowledge and relies solely on the graph representation of
molecules within SELFIES and necessarily leads to a median
molecule. Deep generative models can be used to avoid such
problems, with expert knowledge being derived solely from
a known dataset. However, they require many training exam-
ples, potentially even labeled training data depending on the
specic task at hand. In contrast, our approach is both rules-
free and training-free.
III. Comparison of molecule
generation algorithms

Lastly, to compare the performance of STONED with alternative
generative models, we performed the full set of GuacaMol
benchmarks.32 As STONED does not require training, we simply
identify the single best molecule in the provided training data
for the corresponding benchmark task and use it to generate the
surrounding local chemical subspace via SMILES reordering
and SELFIES mutations. The resulting molecules are evaluated
for their performance in the benchmark. Importantly, this one-
shot optimization approach is able to compete with several of
the state-of-the-art generative models having an overall Guaca-
Mol score of 14.70 (see Table S4†). Furthermore, we also
measured the compound quality of the molecules generated in
the GuacaMol benchmarks as proposed in the literature.32 We
nd that 38% of all the top 100 molecules of each benchmark
© 2021 The Author(s). Published by the Royal Society of Chemistry
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combined pass the quality lters, which is comparable to the
performance of both Graph GA and SMILES GA.32

Finally, we compared the capabilities of STONED with
established algorithms for generating molecules (Table 2).
Similar to VAEs, GANs and RL approaches, STONED relies on
random changes of molecules within a given representation
superseding hard-coded expert rules.14,16 In contrast, expert
systems (ES) typically incorporate fragment combination rules
and heuristic synthesizability and stability checks.16,24,31 More-
over, as SELFIES covers the entire molecular space represent-
able by molecular graphs, STONED allows the systematic
exploration and generation of all these compounds. Impor-
tantly, neither of the alternative methods considered offer
a comparable structure coverage. The hardcoded rules of ES
tend to limit exploration, and within VAEs, GANs and RL the
generated molecules have not been found to stray too far from
the training set. Another important property we considered is
interpolatability, i.e. the possibility to interpolate between two
molecules deterministically. Interpolation in STONED is con-
strained by the number of distinct characters in the SELFIE
string. VAEs and GANs can use geometric interpolation in the
latent space. ES such as Molpher16 and the chemical space travel
algorithm24 perform exploration and interpolation stochasti-
cally similar to a GA. RL techniques typically do not form
a continuous representation, which limits their possibility for
deterministic interpolation. Furthermore, VAEs, GANs and RL
techniques are capable of property-based navigation, i.e.,
selecting structural modications that are likely to improve
properties. This is oen achieved via property estimators such
as neural networks. In VAEs, prediction networks are oen
employed for arranging latent representations based on prop-
erties allowing gradient-based navigation in the property space.
Both STONED and ES can be used in GAs for property-based
navigation, but only in a stochastic way. Additionally, VAEs,
GANs and RL models require training which can be prohibitive
due to the potential need for multiple GPUs. STONED and ES, in
comparison, do not require any training. Finally, VAEs, GANs
and RL require considerably large training datasets. Contrarily,
STONED and ES require very few, if any, reference points. To
summarize, STONED combines the merits of both classical ES
and more sophisticated ML methods for molecule generation
Table 2 Comparison of algorithms for the generation of molecules. 3
and 7 indicate the presence and absence of a feature, respectively. �
indicates that implementation of a feature within the algorithm is, in
principle, possible but not straightforward or has not been carried out
yet

Feature ES VAE GAN RL STONED

Expert rule-free 7 3 3 3 3

Structure coverage � � � � 3

Interpolatability 7 3 3 7 3

Property-based navigation � 3 3 3 �
Training-free 3 7 7 7 3

Data independence 3 7 7 7 3

© 2021 The Author(s). Published by the Royal Society of Chemistry
closing a gap in the available methods to navigate the chemical
space.

IV. Conclusion and outlook

In this work, we have introduced the STONED algorithms to
perform simple and efficient exploration and interpolation in
the chemical space. We demonstrate the simplicity of forming
local chemical subspaces and obtaining chemical paths using
SELFIES as molecular representation, readily generating a vast
amount of molecules that are structurally similar to the seed
structures. Furthermore, we redene the joint molecular simi-
larity to avoid bias towards only a subset of the reference
structures and show that deterministic chemical path forma-
tion using STONED is an extremely efficient heuristic algorithm
to nd median molecules. Additionally, we showcase applica-
tions of STONED for molecular design in both drug discovery
and materials science.

The speed, parallelizability, and performance of STONED
suggests that it can be used for practical tasks such as high-
throughput virtual screening.59 In optimization algorithms
such as genetic algorithms, we believe that median molecule
generation through our approach can be used as a general
crossover rule. The current evaluation standard for deep
generative modeling includes producing valid molecules that
resemble specic datasets.32,33 With the guarantee of molecular
validity in SELFIES by design, perfect results in the validity
benchmark can be trivially achieved. Furthermore, we demon-
strate the simplicity of generating multiple structures that
resemble a known set of molecules. Among other benchmarks,
properties such as penalized log P and QED do not represent
the complexity of molecular design, making them an insigni-
cant benchmarking objective. Accordingly, we also demon-
strated application to more complicated multi-objective
property optimizations including protein docking, dipole
moments, LUMO energies and HOMO–LUMO gaps as target
properties. By introducing STONED, a fast suite of algorithms
that can compete reasonably with deep generative models on
several recently introduced benchmarks, we believe that we
provide a stepping stone to improve generative modeling for
molecular design and its benchmarking.60

V. Methods
A. Formation of local chemical spaces

Starting from a single molecule, we obtain 50 000 SMILES
orderings representing the same structure, convert all of them
to the SELFIES representation, and perform 1–5 point muta-
tions. Hence, a total of 250 000 strings are generated per
experiment. A single mutation consists of a SELFIES character
replacement, deletion, and addition at random positions of the
string. This process is repeated to perform multiple mutated
structures. All the mutants are subsequently converted back to
SMILES for calculating their similarity to the original molecule
based on various ngerprint similarity measures. Within Table
1, this process is repeated for: aripirazole, albuterol, mestranol,
celecoxib (SELFIES, random), celecoxib (SELFIES, terminal
Chem. Sci., 2021, 12, 7079–7090 | 7087
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10%), celecoxib (SELFIES, central 10%), celecoxib (SELFIES,
initial 10%) and celecoxib (SELFIES, scaffold constraint). For
celecoxib (SMILES, random) and celecoxib (DeepSMILES,
random), up to 5 random mutations are performed within the
corresponding representations on 50 000 randomly ordered
strings. For celecoxib (CReM, ChEMBL: SCScore # 2.5), we
performed the MUTATE and GROW operations, using a data-
base of fragments provided in the CreM GitHub repository (vert
replacements02_sc2.5.dbvert).61 The mutate and grow opera-
tions were applied to celecoxib both with and without explicit
hydrogen atoms, with the parameters vert max_sizevert and vert
max_atomsvert set to 100.

B. Chemical paths and interpolations

Suppose that exactly t characters differ in the corresponding
indices of two SELFIES. Then there exist exactly t! paths between
the two SELFIES. The length of all such paths is t as successive
improvements are performed to the previous SELFIE string
encountered in the path. Furthermore, similar to SMILES
representations, a molecule can have multiple SELFIES repre-
sentations allowing for multiple paths between any two given
molecules. Considering n representations of the target struc-
ture, each of which has e1, e2, ., en corresponding starting
SELFIE characters different, the total number of paths becomes
Pn

i¼1
ei!:

In Section II C 2, within a path, we randomly sampled
molecules that necessarily increase ngerprint similarity
allowing for the formation of a chemical path. log P and QED
values of molecules in a path were estimated using RDKit.48 The
docking scores were estimated with the SMINA open-source
soware62 using the setup proposed previously in the litera-
ture.53 Namely, the crystal structures for docking to 5-HT1B and
CYP3D6 were obtained from the Protein Data Bank (PDB) (entry
codes 4IAQ and 3QM4), the binding sites were selected manu-
ally, and the scores of the top 5 best-scoring binding poses were
averaged to maximize consistency of the results. In both
experiments, we considered different SMILES orderings of the
starting and target molecules, respectively, and, between each
pair, repeated the experiment several times, leading to different
results, such that approximately 800 unique molecules from the
paths were obtained. For path and chemical path formation
between two SELFIES, we padded the string to the same length
with a dummy character. The dummy character was removed
from the SELFIES before converting to SMILES.

C. Median molecules for photovoltaics

Themolecules of the HCE database were ordered based on their
ability to maximize one property, while minimizing the other
simultaneously. The top 100 structures from this ordered list
were selected for our experiment in Section II D. In the forma-
tion of generalized paths, the starting molecule is selected
randomly and 10 000 paths were obtained between randomized
orderings of the respective SMILES string. We ran semi-
empirical calculations to obtain the dipole moments, LUMO
energies and HOMO–LUMO gaps for the HCE database and the
7088 | Chem. Sci., 2021, 12, 7079–7090
top-100 unique median structures using GFN2-xTB.55 Random
SELFIES for the experiment were generated via random
combinations of the 34 SELFIEcharacters part of the semanti-
cally robust alphabet. The length of the generated random
SELFIES was restricted to the largest number of characters
within the SELFIES representations of the three reference
molecules.
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