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Molecular AND logic gates 1, 3, 5 and 7, which are designed according
to principles of photoinduced electron transfer (PET) switching,
respond to co-existing Candida antarctica lipase B and H* (and Na™).

Molecular logic-based computation'™ requires gates to process and
store information. Besides its ability to operate in biocompatible
micrometric spaces, the diversity of information available to mole-
cular logic distinguishes it from its semiconductor cousin which
employs voltage information only. For instance, the inputs feeding
gates can take the form of physical entities (eg light dose,’
temperature®), chemical species (e.g. atomic," molecular’) and
biochemical species (e.g nucleotides,® enzymes®). However, there
are hardly any examples of combined atomic and enzyme inputs in
the literature, if at all.

Fluorescent PET switches grew out of the sensing literature.’
Although atomic inputs were present from the beginning,'®
protein inputs were incorporated only recently."’ Even these
covered only some receptor- and transport-proteins.§ A way to
incorporate hydrolase enzymes was described by Ojida et al.'* and
us.” Here, a fluorescent PET system based on a ‘fluorophore-
spacer-amine’ format relied on the upward shift of the amine’s pK,
value by ~2 pH units upon hydrolyzing a neighbouring ester into a
carboxylate anion. Now we show how such systems can serve as
fluorescent molecular logic gates driven by atomic ions, H' and
Na', and a hydrolase enzyme, Candida antarctica lipase B (CALB).

Logic gate 19 is synthesized by nucleophilic substitution of
4-bromomethyl-7-methoxycoumarin with sarcosine ethyl ester.
1 is a typical fluorescent PET ‘off-on’ switch of the ‘fluorophore-
spacer-receptor’ format® with H being the input. By itself, the
7-methoxycoumarin fluorophore has no significant interaction
with H' in the pH range of our experiments since it lacks a
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suitable receptor.'® 1’s pH-dependent fluorescence intensity (Iy)
is analysed according to eqn (1) to give pK, = 3.6. The
fluorescence quantum yields are @ = 0.97 and &g = 0.02.

log[(fs, — Ir)/(Ir — Ir, )] = PH — pK, (1)

The hydrolysis product of 1, which is 2 (shown in Scheme 1 as
the carboxylate form owing to the operational pH range of 6-10
for gate tests), is tested similarly and yields pK, = 6.7. The
fluorescence quantum yields of 2 are ¢y = 0.48 and P =
0.01. The lower @p__ value of 2 (c¢f. 1) is due to the three-atom
linker folding the carboxylate unit over the fluorophore'® to
allow intramolecular interaction in the excited state.'® All these
parameters for all compounds studied are collected in Table 1.

1 was subjected to an enzyme screen to see which enzyme
would hydrolyze 1 most efficiently to 2 at pH 7 (Fig. 1). CALB
was found to be the most efficient, which is gratifying since
CALB is known'” to hydrolyze a variety of esters over a wide pH
range. Additionally, it was found that the hydrolysis reaction
could be most conveniently followed by the fluorescence emission
signal (Fig. 1). Thus we realize that 1 becomes a ‘fluorophore-
spacer;-receptor-spacer,-enzyme substrate’ system.

The fluorescence spectra of 1 at pH 6 and 10 with/without
CALB exposure for 30 min are shown in Fig. 2a. The AND logic
response of the fluorescence signal is clear since both H" and
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Scheme 1 Structures of logic gates 1, 3, 5 and 7 and their hydrolysis
products 2, 4, 6 and 8 respectively.
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Table 1 Parameters obtained for 1-8 via steady-state and time-
dependent fluorescence spectroscopy”

Gate pK, Ppax Prnin - K (107° M) Ve (10°° M s
1 3.6 097 0.02 1.9 0.50

2 6.7 0.8 001 — —

3 45  0.56 0.05 1.1 7.5

1 _b _ b _ b _ _

5 45  0.57 0.07 1.6 97

6 71 0.20 0.01 — —

7 5.8°  0.18,50.167 0.09° 0.22° 0.75°

8 8.8 0.15°0.12¢9 0.06° — —

¢ In water : methanol (4:1, v/v), except for 7 and 8 where water : DMSO
(1:1, v/v) is used. ” Not determined, but all these values are expected to
be close to those of 6. © At 1.0 M Na*. ¢ At ~0.0 M Na".

60
% yield of 2

Fig. 1 The influence of various enzymes on the % yields of the hydrolysis
product of 1, i.e. 2, and their corresponding fluorescence output after exposure
for 12 h at pH 7. Total fluorescence intensity monitoring conducted with ey =
326 nm. Enzyme numbers are shown in red. Enzymes: 1. Candida cylindracea
lipase Cl1, 2. Candida cylindracea lipase C2, 3. Rhizopus oryzae lipase, 4.
Achromobacter spp. lipase, 5. Alcaligenes spp. lipase, 6. Pseudomonas cepacia
lipase, 7. Pseudomonas stutzeri lipase, 8. Rhizopus spp. lipase, 9. Rhizopus niveus
lipase, 10. Aspergillus niger lipase, 11. Alcaligenes spp. lipase, 12. Pseudomonas
cepacia lipase P2, 13. Mucor javanicus lipase, 14. Penicillium camambertii lipase,
15. Rhizopus oryzae lipase, 16. Rhizopus niveus protease, 17. Bacillus stearother-
mophilus protease, 18. Aspergillus oryzae protease, 19. Aspergillus melleus
protease, 20. Bacillus subtilis protease, 21. Aspergillus spp. aminoacylase,
22. Penicillium fluoroscens lipase, 23. Candida antarctica B lipase, 24. Mucor
meihei lipase, 25. Candida antarctica A lipase, 26. Fiscus spp. ficin, 27. Bromelia-
ceae bromelain, 28. Carica papaya papain, 29. Candida antarctica (immob)
lipase B, 30. Porcine pancrease, type Il, 31. Bacillus lentus protease, 32. Bacillus
lentus (immob) protease, 33. Bacillus lincheniformis protease, 34. Bacillus
lincheniformis (immob) protease, 35. Porcine pancrease grade I, 36. Pig liver
esterase, 37. Penicillin acylase. 38. Alpha amylase. Data point 39 is pure 2.

CALB are needed to elicit a ‘high’ fluorescence response from 1.
When exposed to CALB at pH 6, 1 gradually hydrolyzes to 2 and
shows a gradual increase in fluorescence intensity. The 1-CALB
interaction is governed by a Michaelis constant Ky of 1.9 X
107" M and Vyax value of 5.0 x 107'° M s™*. These values are
obtained by applying eqn (2) to convert the rate of change of
fluorescence intensity into the rate of change of the product 2
concentration, followed by the application of eqn (3).'

V= d(2)/dt = [dIe/de]- (1) =oA[(Pr/Pe,) — 1]T5,}  (2)

1/V = [(Knmt/ Vinax)/(1)] + 1/Vinax (3)
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Fig. 2 (a) Fluorescence spectra of 7.3 x 10~% M 1 under stimulation with H*
and CALB inputs for 30 min in water:methanol (4 : 1, v/V) (Aexc = 326 nm) at
20 °C where 'high’ and 'low’ H* correspond to pH 6 and 10 respectively and
‘high” and ‘low’ CALB correspond to 7.1 x 107°Mand O M respectively. Input
states (H™, CALB) of (0,0), (1,0), (0,1) and (1,1) are shown in blue, red, green
and purple respectively. The ‘high’ level of H* input, 107 M, is chosen from
the pH value at which maximum discrimination of the fluorescence signals
between 1 and 2 is seen in (b). (b) & of 1 (black) and 2 (orange) as a function
of pH. (c) Pictorial version of truth table showing @ values extracted from (a).
Output threshold chosen at @¢ = 0.13.

It is to be noted that the enzyme reaction is irreversible
under our experimental conditions so that the logic device is
suitable only for single-use situations. Such single-use situa-
tions are commonly present in the medical diagnostics sphere,
as seen with two™’- or three®® (Scheme 1).

Owing to the diversity available in inputs, outputs, power
supplies and devices within molecular logic, several routes to
reconfigurability have become available.> However, we are not
aware of any cases in the primary literature where logic is
reconfigured by changing molecular configuration. Since the
enantiodiscrimination of enzymes is well-established, we now
have an opportunity to present such an approach.

The enantiomeric pair of logic gates 3¢ and 59 arise from a
synthesis analogous to that of 1. The hydrolysis products of
these are 4 and 6 respectively, although only 6 was available for
pK, determination. pK, values are measured for these com-
pounds with the aid of eqn (1), as done for 1 and 2. The values
obtained for 3, 5 and 6 are 4.5, 4.5 and 7.1 respectively. The pK,
value of 4 is expected to be the same as that found for its
opposite enantiomer 6, i.e. 7.1.

As seen in Fig. 3a, the fluorescence spectra of 3 at pH 6 and
10 with/without CALB exposure for 30 min correspond to a
PASS 0 logic action. On the other hand, Fig. 3b shows an AND
logic action for 5. 3 and 5 differ in the configuration of the
functional groups around the asymmetric carbon. Thus, logic
reconfiguring is achieved by changing the molecular configu-
ration of the device. At pH 6, Ky values are not very different,
ie. 1.1 x 107> and 1.6 x 107> M, for 3 and 5 respectively.
However, V.. values differ significantly, i.e. 7.5 x 10~° and
9.7 x 10°¥ M s, as a result of CALB’s enantioselectivity.

We have explored the modularity of our design by building a
prototype 3-input AND gate 79 of the ‘receptor;-spacer;—
fluorophore-spacer,-receptor,-spacer;-enzyme substrate’ format,

Chem. Commun., 2020, 56, 6838-6841 | 6839
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Fig. 3 (a) Fluorescence spectra of 7.3 x 107 M 3 under stimulation with
H* and CALB inputs for 30 min in water:methanol (4:1, V/V) (dexc =
326 nm). ‘High' and ‘low’ input levels are as in Fig. 2. Input states are
coloured as in Fig. 2. The ‘high’ level of H* input, 107° M, is chosen from
the pH value at which maximum discrimination of the fluorescence signals
between 5 and 6 is seen in (c). (b) Same as in (a) but for 5 instead of 3. (c) ¢
of 5 (black) and 6 (orange)as a function of pH. (d) Pictorial version of truth
table showing @ values extracted from (a) and (b). Left-hand bars of each
pair correspond to 3 whereas right-hand bars correspond to 5. Output
threshold chosen at @ = 0.13.

which is driven by CALB, H' and Na'. The sensitivity of logic gate
7’s fluorescence to Na', ¢f that of 1, arises from the new benzo-18-
crown-6 ether functional group within 7.

7 is synthesized by reacting a known anthracene-crown ether
conjugate’" with sarcosine ethyl ester. Its AND logic behaviour
is shown in Fig. 4a and c. Its pK, = 5.8 (at 1.0 M Na') in
water : DMSO (1:1, v/v). 8, the hydrolysis product of 7, has pK, = 8.8
under the same conditions. The log fix,+ values for 7 and 8 are
0.7 and 0.8 respectively (at pH 4.5). The 7-CALB interaction is
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Fig. 4 (a) Fluorescence spectra of 7.3 x 107% M 7 under stimulation with
H*, Na* and CALB inputs for 30 min in water: DMSO (1:1, V/V) (lexe =
378 nm). 'High" and ‘low’ input levels for H* and CALB are as in Fig. 2,
except that ‘high” H™ is 1077 M, with ‘high’ and ‘low’ Na* levels being
chosen as 1.0 and O M respectively. Input states are coloured as in Fig. 1 for
‘high’ Na*, while those with ‘low’ Na* are shown in the same colours but
with 50% transparency. The ‘high’ level of H* input, 10~ M, is chosen from
the pH value at which maximum discrimination of the fluorescence signals
between 7 and 8 is seen in (b). (b) @¢ of 7 (black) and 8 (orange) as a
function of pH in the presence of 1.0 M Na*. (c) Pictorial version of truth
table showing @¢ values extracted from (a). Output threshold chosen at
@ = 0.13.
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characterized at pH 7 and at 1.0 M Na* by Ky, = 2.2 x 10°° M and
Vinax = 7.5 X 107'° M s, This proof of principle study does not
examine selectivity issues with respect to other metal ions.

We conclude that the fluorescent PET sensing/switching
design is a useful starting point for constructing tailored
molecular logic systems which employ mixed inputs from the
chemical and biological spheres, especially when the latter
concerns a hydrolase enzyme. Such systems are unique when
compared with previously developed AND and other logic
gates.>® This approach also allows demonstration of logic
reconfiguring by changing the molecular configuration of the
logic device.
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Note added in proof: Fluorescent PET probes for some
oxidoreductase proteins are also available.§**

Conflicts of interest

There are no conflicts to declare.

Notes and references

§ See note added in proof.

9 1; '"H NMR (CDCl3): 6 1.30 (t, 3H, OCH,CHj, J = 7 Hz), 2.44 (s, 3H,
NCH3), 3.38 (s, 2H, ArCH,N), 3.84 (s, 2H, NCH,CO), 3.89 (s, 3H, OCH3),
4.21 (q, 2H, OCH,CHj, J = 7 Hz), 6.35 (s, 1H, CHCO), 6.83 (m, 1H, ArH),
6.87 (m, 1H, ArH), 7.90 (d, 2H, ArH, J = 9 Hz). *C NMR (CDCl,): § 41.1,
41.5, 56.8, 58.5, 100.9, 111.8, 112.7, 112.8, 126.8, 151.9, 156.0, 162.2,
163.7,172.0. MS(ES): 306.1341 [M + H']. Calculated m/z for C;6H,;oNO5",
306.1355.

3; 'H NMR (CDCl,): ¢ 1.38 (d, 3H, C(CH;)H, J = 7 Hz), 1.86 (s, 1H,
NH), 3.44 (q, 1H, C(CH3)H, J = 7 Hz), 3.77 (s, 3H, CO,CHj3), 3.87 (s, 3H,
OCHj,), 3.89 (dd, 2H, CH,NH, J = 16, 107 Hz), 6.43 (s, 1H, CHCO), 6.82
(m, 1H, ArH), 6.86 (m, 1H, ArH), 7.58 (d, 1H, ArH, 9 Hz). >C NMR
(CDCly): 6 17.4, 45.8, 50.1, 53.8, 54.4, 99.1, 108.5, 110.1, 110.4, 123.2,
151.6, 153.6, 159.6, 160.7, 174.0. MS(ES): 292.1170 [M + H']. Calculated
m/z for C15H;gNO5", 292.1185.

5; "H NMR (CDCl3): 6 1.38 (d, 3H, C(CH3)H, J = 7 Hz), 1.86 (s, 1H,
NH), 3.44 (q, 1H, C(CH3)H, J = 7 Hz), 3.77 (s, 3H, CO,CHj3), 3.87 (s, 3H,
OCHj,), 3.89 (dd, 2H, CH,NH, J = 16, 107 Hz), 6.43 (s, 1H, CHCO), 6.82
(m, 1H, ArH), 6.86 (m, 1H, ArH), 7.58 (d, 1H, ArH, 9 Hz). "*C NMR
(CDCl,): § 17.4, 45.8, 50.1, 53.9, 54.4, 99.1, 108.6, 110.1, 110.4, 123.2,
151.5, 153.7, 159.6, 160.7, 174.0. MS(ES): 292.1182 [M + H"]. Calculated
m/z for C;sH gNOs", 292.1185.

7; "H NMR (CDCl;): § 1.29 (t, 3H, CH,CHj3, J = 7 Hz), 2.49 (s, 3H,
NCH,), 3.43 (s, 2H, NCH,), 3.50-3.90 (m, 16H, CH,O0), 4.19 (q, 2H,
OCH,CH3, J = 7 Hz), 4.73 (2H, s, AnthCH,N), 4.88 (s, 2H, AnthCH,Ar),
6.46-6.57 (3H, m, ArH), 7.48 (m, 4H, AnthH), 8.19 (d, 2H, AnthH,
J =9 Hz), 8.61 (d, 2H, AnthH, J = 9 Hz). "*C NMR (CDCl,): § 14.7, 35.0,
45.1, 55.0, 60.6, 69.4, 70.0, 70.9, 71.4, 114.3, 114.9, 117.4, 121.2, 122.5,
124.0, 125.8, 127.3, 129.0, 140.9, 141.4, 171.7. MS(ES): 588.2994
[M + H']. Calculated m/z for C35H,,NO,", 588.2961.
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