Issue 1, 2025

Chiral-driven formation of hybrid cyanurates with large birefringence

Abstract

Ultraviolet (UV) birefringent crystals have important applications in polarizers, optical isolators and optical information processing. Crystals with large birefringence can enhance the modulation ability of light and realize the miniaturization of devices. However, the birefringence of cyanurates is often limited by the large dihedral angles between anionic groups. In this work, a chiral-driven approach is proposed for the first time to construct cyanurates with large birefringence. We combined racemic or chiral α-methylbenzylamine (α-MBA) molecules with a π-conjugated cyanurate group (CY), which led to the isolation of three organic hybrid cyanurates with wide band gaps >5.10 eV, namely, rac-α-MBACY, R-α-MBACY, and S-α-MBACY. Notably, the presence of chirality leads to a significant reduction of the dihedral angle between the α-MBA cation and (H2C3N3O3) anion and a threefold increase in birefringence from 0.113@546 nm to 0.344@546 nm and 0.338@546 nm. The birefringence values of R-α-MBACY and S-α-MBACY exceed those of most of the cyanurates and commercial crystals, indicating their potential as UV birefringent crystals. This work provides new insights into the design and syntheses of UV birefringent materials.

Graphical abstract: Chiral-driven formation of hybrid cyanurates with large birefringence

Supplementary files

Article information

Article type
Paper
Submitted
05 Nab 2024
Accepted
18 Nab 2024
First published
20 Nab 2024

CrystEngComm, 2025,27, 30-37

Chiral-driven formation of hybrid cyanurates with large birefringence

Y. Zhao, C. Hu, P. Chen, M. Zhang and J. Mao, CrystEngComm, 2025, 27, 30 DOI: 10.1039/D4CE01123F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements